zaydzuhri's picture
Add files using upload-large-folder tool
0298ad2 verified
raw
history blame
37.6 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import sys
from collections import defaultdict
from typing import Tuple
import torch
try:
import tomllib
except ModuleNotFoundError:
import tomli as tomllib
from torchtitan.tools.logging import logger
TORCH_DTYPE_MAP = {
"float16": torch.float16,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
def string_list(raw_arg):
"""Comma-separated string list argument."""
return [s.strip() for s in raw_arg.split(",") if s.strip()]
def check_string_list_argument(args_dict: dict[str, any], fullargname: str):
section, name = fullargname.split(".")
# Split string list which are still raw strings.
if (
section in args_dict
and name in args_dict[section]
and isinstance(args_dict[section][name], str)
):
sec = args_dict[section]
sec[name] = string_list(sec[name])
class JobConfig:
"""
A helper class to manage the train configuration.
Semantics:
- Default config is loaded from a toml file. If no toml file is provided,
then the default config is loaded from argparse defaults.
- if toml file has missing keys, they are filled with argparse defaults.
- if additional explicit cmd args are provided in addition to the toml
file, they will override the toml config and the argparse defaults
precedence order: cmdline > toml > argparse default
Arg parsing semantics:
Each argument starts with <prefix>_ which is the section name in the toml file
followed by name of the option in the toml file. For ex,
model.name translates to:
[model]
name
in the toml file
"""
def __init__(self):
self.args_dict = None
# main parser
self.parser = argparse.ArgumentParser(description="torchtitan arg parser.")
self.parser.add_argument(
"--job.config_file",
type=str,
default=None,
help="Job config file",
)
# job level configs
self.parser.add_argument(
"--job.dump_folder",
type=str,
default="./torchtitan/outputs",
help="Folder to dump job outputs",
)
self.parser.add_argument(
"--job.description",
type=str,
default="default job",
help="Description of the job",
)
self.parser.add_argument(
"--job.use_for_integration_test",
action="store_true",
help="Add this config to the integration test suite",
)
self.parser.add_argument(
"--job.print_args",
action="store_true",
help="Print the args to terminal",
)
# model configs
self.parser.add_argument(
"--model.name",
type=str,
default="fla",
help="Which model to train",
)
self.parser.add_argument(
"--model.config",
type=str,
default="fla-hub/transformer-1.3B-100B",
help="Path to the model config",
)
self.parser.add_argument(
"--model.tokenizer_path",
type=str,
default="fla-hub/transformer-1.3B-100B",
help="Tokenizer path",
)
self.parser.add_argument(
"--model.converters",
type=string_list,
nargs="+",
default=[],
help="""
Comma separated list of converters to apply to the model.
For instance, the `float8` converter swaps `torch.nn.Linear`
with `Float8Linear`. This feature requires you to install 'torchao'
which can be found here: https://github.com/pytorch/ao
""",
)
self.parser.add_argument(
"--model.print_after_conversion",
action="store_true",
help="""
If true, model definition will be printed to stdout after all model
converters have been applied.
""",
)
# profiling configs
self.parser.add_argument(
"--profiling.enable_profiling",
action="store_true",
help="Whether to enable pytorch profiler",
)
self.parser.add_argument(
"--profiling.save_traces_folder",
type=str,
default="profile_traces",
help="Trace files location",
)
self.parser.add_argument(
"--profiling.profile_freq",
type=int,
default=10,
help="How often to collect profiler traces, in iterations",
)
self.parser.add_argument(
"--profiling.enable_memory_snapshot",
action="store_true",
help="Whether to dump memory snapshot",
)
self.parser.add_argument(
"--profiling.save_memory_snapshot_folder",
type=str,
default="memory_snapshot",
help="Memeory snapshot files location",
)
# optimizer configs
self.parser.add_argument(
"--optimizer.name", type=str, default="AdamW", help="Optimizer to use"
)
self.parser.add_argument(
"--optimizer.eps",
type=float,
default=1e-8,
help="Epsilon value for the optimizer.",
)
self.parser.add_argument(
"--optimizer.lr", type=float, default=8e-4, help="Learning rate to use"
)
self.parser.add_argument(
"--optimizer.implementation",
type=str,
default="fused",
choices=["for-loop", "foreach", "fused"],
help="""
Specify which optimizer implementation to use:
- 'fused': Use fused implementation (CUDA only) for best performance.
- 'foreach': Use some horizontal fusion of tensors for better performance.
- 'for-loop': Use the default implementation for the optimizer (slowest).
- more info: https://pytorch.org/docs/stable/optim.html
""",
)
self.parser.add_argument(
"--optimizer.early_step_in_backward",
action="store_true",
help="""
Whether to apply optimizer in the backward. Caution, optimizer_in_backward
is not compatible with gradients clipping, users should not call
register_post_accumulate_grad_hook after the optimizer is built.""",
)
# lr scheduler configs
self.parser.add_argument(
"--lr_scheduler.warmup_steps",
type=int,
default=200,
help="Steps for lr scheduler warmup, normally 1/5 of --training.steps",
)
self.parser.add_argument(
"--lr_scheduler.decay_ratio",
type=float,
default=None,
help="""
Controls the proportion of the training steps allocated to the learning rate decay phase.
If `None`, the learning rate will begin decaying immediately after the warmup period.
Otherwise, the learning rate will remain stable after the warmup period and
only start decaying during the last `decay_ratio` portion of the total training steps.
This is known as the Warmup-Stable-Decay (WSD) schedule, as described in https://arxiv.org/abs/2404.06395.
""",
)
self.parser.add_argument(
"--lr_scheduler.decay_type",
type=str,
default="linear",
choices=["linear", "sqrt", "cosine"],
help="""
Learning rate decay type to use during training:
- 'linear': linearly decays learning rate from initial to final value
- 'sqrt': decays learning rate following a 1 minus square root curve
- 'cosine': smoothly decays learning rate following a cosine curve
""",
)
self.parser.add_argument(
"--lr_scheduler.lr_min",
type=float,
default=0.0,
help="""
Min lr ratio for lr scheduler.
If provided, the range of decay factor is scaled from 1 to `lr_min`
to ensure the learning rate does not drop below `optimizer.lr * lr_scheduler.lr_min`.
""",
)
# training configs
self.parser.add_argument(
"--training.batch_size", type=int, default=8, help="Batch size"
)
self.parser.add_argument(
"--training.seq_len", type=int, default=2048, help="Sequence length"
)
self.parser.add_argument(
"--training.context_len",
type=int,
default=2048,
help="Max length allowed for each sequence",
)
self.parser.add_argument(
"--training.varlen",
action="store_true",
help="Whether to take sequences of variable length as input",
)
self.parser.add_argument(
"--training.gradient_accumulation_steps",
type=int,
default=1,
help="Number of steps to accumulate gradients before updating parameters",
)
self.parser.add_argument(
"--training.steps",
type=int,
default=10000,
help="How many train steps to run",
)
self.parser.add_argument(
"--training.max_norm",
type=float,
default=1.0,
help="Max norm for gradient clipping",
)
self.parser.add_argument(
"--training.skip_nan_inf",
action="store_true",
help="Skip batch updates when NaN or INF gradients are encountered during training",
)
self.parser.add_argument(
"--training.dataset",
default="HuggingFaceFW/fineweb-edu",
help="Dataset to use, with comma separated values",
)
self.parser.add_argument(
"--training.dataset_name",
default=None,
help="The name of the dataset config, with comma separated values if provided",
)
self.parser.add_argument(
"--training.dataset_split",
default=None,
help="Dataset split to use, with comma separated values if provided",
)
self.parser.add_argument(
"--training.data_dir",
default=None,
help="Data dirs to use, with comma separated values if provided",
)
self.parser.add_argument(
"--training.data_files",
default=None,
help="Data files to use, with comma separated values if provided",
)
self.parser.add_argument(
"--training.data_probs",
default=None,
help="Data sampling probabilities, with comma separated values if provided",
)
self.parser.add_argument(
"--training.streaming",
action="store_true",
help="Whether to load dataset in streaming mode, used for huge dataset",
)
self.parser.add_argument(
"--training.num_workers",
type=int,
default=32,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
self.parser.add_argument(
"--training.prefetch_factor",
type=int,
default=2,
help="Number of batches loaded in advance by each worker."
"2 means there will be a total of 2 * num_workers batches prefetched across all workers.",
)
self.parser.add_argument(
"--training.data_parallel_replicate_degree",
type=int,
default=1,
help="""
The `data_parallel_replicate_degree` argument specifies the degree of
data parallelism for weight replication. When this value is greater
than 1, weights will be replicated across `data_parallel_replicate_degree`
ranks. If `data_parallel_shard_degree` is also greater than 1, the parallelism
method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the
parallelism method used is DDP (Distributed Data Parallelism).
1 means disabled.""",
)
self.parser.add_argument(
"--training.data_parallel_shard_degree",
type=int,
default=-1,
help="""
The `data_parallel_shard_degree` argument specifies the degree of data
parallelism for weight sharding. When this value is greater than 1, weights
will be sharded across `data_parallel_shard_degree` ranks. If
`data_parallel_replicate_degree` is also greater than 1, the parallelism
method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the
parallelism method used is FSDP (Fully Sharded Data Parallelism).
-1 means leftover ranks will be used (After DP_REPLICATE/SP/PP). Note that
only `data_parallel_shard_degree` can be negative. 1 means disabled.""",
)
self.parser.add_argument(
"--training.enable_cpu_offload",
action="store_true",
help="""
Whether to apply CPU offloading of parameters, gradients, and optimizer states in FSDP""",
)
self.parser.add_argument(
"--training.tensor_parallel_degree",
type=int,
default=1,
help="Tensor Parallelism degree. 1 means disabled.",
)
self.parser.add_argument(
"--training.disable_loss_parallel",
action="store_true",
help="Whether to apply loss parallel when sequence parallel is enabled",
)
self.parser.add_argument(
"--training.fsdp_reshard_after_forward",
type=str,
default="default",
choices=["default", "always", "never"],
help="""
`reshard_after_forward` specifies the policy for applying `reshard_after_forward`
within an FSDP setup. `reshard_after_forward` controls parameter behavior after forward,
trading off memory and communication. See torch's `fully_shard` API for more documentation
on `reshard_after_forward`.
The supported policies include "default", "always" and "never":
- "default" applies default resharding behavior, implementing "smart defaults" for known optimal
scenarios.
- "always" will enable `reshard_after_forward` for all forward passes.
- "never" will disable `reshard_after_forward` for all forward passes.
""",
)
self.parser.add_argument(
"--training.mixed_precision_param",
type=str,
default="bfloat16",
choices=["bfloat16", "float32"],
help="""
torch dtype to use for parameters when applying mixed precision via FSDP.
This feature only takes effect when data_parallel_shard_degree > 1
""",
)
self.parser.add_argument(
"--training.mixed_precision_reduce",
type=str,
default="float32",
choices=["float32"],
help="""
torch dtype to use for reductions when applying mixed precision via FSDP.
This feature only takes effect when data_parallel_shard_degree > 1
""",
)
self.parser.add_argument(
"--training.compile",
action="store_true",
help="Whether to compile the model",
)
self.parser.add_argument(
"--training.gc_freq",
type=int,
default=50,
help="Python garbage control scheduling interval, in steps",
)
self.parser.add_argument(
"--training.seed",
type=int,
default=42,
help="Choose the base RNG seed used for training",
)
self.parser.add_argument(
"--training.deterministic",
action="store_true",
help="Use deterministic algorithms wherever possible, may be slower",
)
# metrics configs
self.parser.add_argument(
"--metrics.log_freq",
type=int,
default=10,
help="How often to log metrics to TensorBoard, in iterations",
)
self.parser.add_argument(
"--metrics.enable_tensorboard",
action="store_true",
help="Whether to log metrics to TensorBoard",
)
self.parser.add_argument(
"--metrics.disable_color_printing",
action="store_true",
help="Whether to disable color printing in logs",
)
self.parser.add_argument(
"--metrics.save_tb_folder",
type=str,
default="tb",
help="Folder to dump TensorBoard states",
)
self.parser.add_argument(
"--metrics.save_for_all_ranks",
action="store_true",
default=False,
help="""
Whether to save TensorBoard/Wandb metrics only for rank 0 or for all ranks.
When this option is False and pipeline_parallel_degree is > 1, the metrics
component uses the 0th rank of the last stage pipeline group, which is the
only stage that computes loss metrics.
""",
)
self.parser.add_argument(
"--metrics.enable_wandb",
action="store_true",
help="Whether to log metrics to Weights & Biases",
)
self.parser.add_argument(
"--experimental.enable_async_tensor_parallel",
action="store_true",
help="Whether to apply async tensor parallel (currently only effective when compile is enabled)",
)
self.parser.add_argument(
"--experimental.pipeline_parallel_degree",
type=int,
default=1,
help="""
Pipeline Parallelism degree, or number of ranks. 1 means disabled.
If using looped schedules, this still specifies the number of physical ranks, not the number
of stages. Stages per rank are inferred from split points degree, and schedule.""",
)
self.parser.add_argument(
"--experimental.pipeline_parallel_split_points",
type=string_list,
nargs="+",
default=[],
help="""
Specify comma-separated names of modules to use as the beginning of a split point.
e.g. "layers.0,layers.2" will cause the model to be split into 3 stages,
the first containing all the layers up to layers.0,
the second containing layers.0 and up to layers.2,
the third containing layers.2 and all the remaining layers.
Note: fully-automated splitting may be enabled in the future,
but currently the split points must be specified manually.""",
)
self.parser.add_argument(
"--experimental.pipeline_parallel_schedule",
type=str,
default="1F1B",
help="""
Specify the Pipeline Parallel schedule to use. The supported schedules are:
https://github.com/pytorch/pytorch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/torch/distributed/pipelining/schedules.py#L2161.
The schedule must be compatible with the split points and stages_per_rank.
Looped schedules (e.g. Interleaved1F1B) require specifying pipeline_parallel_degree = number of ranks,
and split_points = number of stages - 1
""",
)
self.parser.add_argument(
"--experimental.pipeline_parallel_schedule_csv",
type=str,
default="",
help="""
Specify the path to the pipeline parallel schedule csv file to use.
The pipeline_parallel_schedule argument must be either
PipelineScheduleSingle, PipelineScheduleMulti, or _PipelineScheduleRuntime.
""",
)
self.parser.add_argument(
"--experimental.pipeline_parallel_microbatches",
type=int,
default=None,
help="""
How many microbatches to split the global training batch into when using pipeline parallelism.
The global training batch size must be evenly divisible by the number of microbatches.
The default value will be the number of pipeline stages, if unspecified.
""",
)
self.parser.add_argument(
"--experimental.enable_compiled_autograd",
action="store_true",
help="Enable CompiledAutograd to compile the backward.",
)
self.parser.add_argument(
"--experimental.context_parallel_degree",
type=int,
default=1,
help="Context parallelism degree. 1 means disabled.",
)
self.parser.add_argument(
"--experimental.context_parallel_rotate_method",
type=str,
default="allgather",
help="""
The collective to use in context parallel SDPA for kv shards exchange.
'allgather' means to all-gather all kv shards on ranks after the first sub-SDPA computation,
'alltoall' means to all-to-all shuffle the kv shards.
The default value is 'allgather'.
""",
)
# I'm not particularly fond of this. Users can choose to write their own wrapper
# module and import TorchTitan training loop and execute it, which look cleaner.
# One reason to provide this option is to allow users to use the existing run script.
# While the script is pretty trivial now, we may add more logic when integrating
# with TorchFT.
# This option is subject to change and may be deleted in the future.
self.parser.add_argument(
"--experimental.custom_model_path",
type=str,
default="",
help="""
The --custom_model_path option allows to specify a custom path to a model module
that is not natively implemented within TorchTitan.
Acceptable values are the file system path to the module (e.g., my_models/model_x)
dotted import module (e.g., some_package.model_x).
""",
)
# checkpointing configs
self.parser.add_argument(
"--checkpoint.enable_checkpoint",
action="store_true",
help="Whether to enable checkpoint",
)
self.parser.add_argument(
"--checkpoint.folder",
type=str,
default="checkpoint",
help="""
The folder to store the checkpoints.
When enable_checkpoint is set to true, checkpoints will be in {--job.dump_folder}/{--checkpoint.folder}.
""",
)
self.parser.add_argument(
"--checkpoint.interval",
type=int,
default=500,
help="Checkpointing interval in steps.",
)
self.parser.add_argument(
"--checkpoint.model_weights_only",
action="store_true",
help="""
When model_weights_only=True, only model weights will be saved at the end of training.
With this, checkpoints can be loaded using `torch.load(..., weights_only=True)` after conversion.
When model_weights_only=False, the full checkpoint will be saved.
A full checkpoint includes model, optimizer and train_state, which can be used to resume training.
The default value is false.
""",
)
self.parser.add_argument(
"--checkpoint.export_dtype",
type=str,
default="float32",
choices=["float16", "bfloat16", "float32"],
help="""
Converts to the specified precision when training completes and model_weights_only=true.
Currently supports float32, float16, and bfloat16.
The default value is float32.
""",
)
self.parser.add_argument(
"--checkpoint.create_seed_checkpoint",
action="store_true",
help="""
Initializes the full model without applying parallelisms, and then saves it as a seed checkpoint.
Note: requires user to call train.py without specifying any parallelisms, e.g. NGPU=1.
Could be implemented as a separate script, but this way shares more code.
""",
)
self.parser.add_argument(
"--checkpoint.async_mode",
type=str,
default="disabled",
help="""
Which async checkpoint mode to use. Currently there are 3 different modes.
1. "disabled": synchronized checkpointing will be used.
2. "async": torch.distributed.checkpoint.async_save will be used.
3. "async_with_pinned_mem": this option utilizes a dedicated pinned memory
space and creates a separate process for faster GPU->CPU transfer
performance and eliminating GIL contention. The cost is increased CPU
memory usage. If insufficient CPU memory is available, performance may
degrade due to memory paging. For most users, "async" should suffice as
the performance overhead is typically small (on the order of tens of
seconds) compared to checkpointing frequency. This mode can be employed
to pursue near-zero checkpointing times (e.g., < 1 second) given
appropriate hardware support such as ample CPU memory and fast PCIe.
"disabled" is the default mode.
""",
)
self.parser.add_argument(
"--checkpoint.keep_latest_k",
type=int,
default=0,
help="""
Keeps only the latest k checkpoints, and purging older ones. If 0, keep all checkpoints.
0 is the default value. k cannot be 1 as the last one may be in the process of being
saved. As a result, the metadata of the last one may not be ready yet.
""",
)
self.parser.add_argument(
"--checkpoint.load_step",
type=int,
default=-1,
help="Load the checkpoint at the specified step. If -1, load the latest checkpoint.",
)
self.parser.add_argument(
"--checkpoint.exclude_from_loading",
type=string_list,
nargs="*",
default=[],
help="""
Exclude specific keys from being loaded from the checkpoint.
Provide a comma-separated list of keys to exclude, e.g. 'optimizer,lr_scheduler,dataloader'.
This will load the model only, excluding the specified keys.
""",
)
self.parser.add_argument(
"--checkpoint.convert_to_hf_on_save",
action="store_true",
help="""
If true, automatically convert the saved DCP checkpoint to Hugging Face format
in a parallel directory (e.g., step-1000-hf) after each save.
""",
)
self.parser.add_argument(
"--checkpoint.hf_upload_enabled",
action="store_true",
help="Enable uploading converted Hugging Face checkpoints to the Hub.",
)
self.parser.add_argument(
"--checkpoint.hf_repo_base_name",
type=str,
default=None,
help="Hugging Face Hub repository ID to upload checkpoints to (e.g., 'username/repo').",
)
self.parser.add_argument(
"--checkpoint.hf_upload_format",
type=str,
default="dcp",
choices=["dcp", "hf"],
help="""
Format to upload to Hugging Face Hub. 'dcp' for DCP format, 'hf' for Hugging Face format.
Note: 'hf' is only supported for models with a single pipeline stage.
""",
)
# activation checkpointing configs
self.parser.add_argument(
"--activation_checkpoint.mode",
type=str,
default="selective",
help="Type of activation checkpointing to use ['none', 'full', 'selective']",
)
self.parser.add_argument(
"--activation_checkpoint.selective_ac_option",
type=str,
default="2", # 2 = checkpoint every other layer
help="""
Selective activation checkpointing options ['int', 'op'].
'int' (e.g., 2) for every nth layer, or 'op' for op level ac.
""",
)
self.parser.add_argument(
"--activation_offload.mode",
type=str,
default="none",
help="""
if we are using activation offload or not. Options are ['none', 'full'].
""",
)
# float8 configs
self.parser.add_argument(
"--float8.enable_fsdp_float8_all_gather",
action="store_true",
help="Whether enable float8 all-gather in FSDP, recommended for tensorwise scaling",
)
self.parser.add_argument(
"--float8.precompute_float8_dynamic_scale_for_fsdp",
action="store_true",
help="Whether precompute float8 scales dynamically for FSDP, recommended for tensorwise scaling",
)
self.parser.add_argument(
"--float8.force_recompute_fp8_weight_in_bwd",
action="store_true",
help="""
Whether to force the recomputation of FP8 weights during backward pass.
When using FSDP with tensorwise scaling, it is recommended to enable
`force_recompute_fp8_weight_in_bwd` to prevent saving unsharded FP8 weights
for backward computation.
""",
)
self.parser.add_argument(
"--float8.recipe_name",
type=str,
default=None,
choices=["tensorwise", "rowwise", "rowwise_with_gw_hp"],
help="""
If specified, creates float8 config from recipe name, valid choices are
`tensorwise`, `rowwise` and `rowwise_with_gw_hp`.
""",
)
# communications library settings
self.parser.add_argument(
"--comm.init_timeout_seconds",
type=int,
default=300,
help="Timeout for communication operations, during initialization and first train step.",
)
self.parser.add_argument(
"--comm.train_timeout_seconds",
type=int,
default=100,
help=(
"Timeout for communication operations after the first train step -- "
"usually a tighter bound than during initialization."
),
)
self.parser.add_argument(
"--comm.trace_buf_size",
type=int,
default=20000,
help="Flight recorder ring buffer size, >0 means recording by default, 0 means disabled",
)
# memory estimation settings
self.parser.add_argument(
"--memory_estimation.enabled",
help="Whether to estimate memory usage for FSDP",
action="store_true",
)
self.parser.add_argument(
"--memory_estimation.disable_fake_mode",
help="Whether to estimate memory under FakeTensorMode",
action="store_true",
)
self.parser.add_argument(
"--fault_tolerance.enable",
action="store_true",
help="""
Enable TorchFT integration. When TorchFT is enabled, HSDP will be used.
And --fault_tolerance.data_parallel_replicate_degree should be 1 and
--fault_tolerance.group_size will be used to control the maximum
replicate group size as the replicate group size is dynamic.
Note that this is still an experimental feature.
""",
)
self.parser.add_argument(
"--fault_tolerance.replica_id",
type=int,
default=0,
help="The TorchFT replica ID of this run.",
)
self.parser.add_argument(
"--fault_tolerance.group_size",
type=int,
default=0,
help="""
The number of TorchFT replicate groups. This number will be used for
dataloader to split the dataset across the replicate groups and FSDP
dimension
""",
)
self.parser.add_argument(
"--fault_tolerance.min_replica_size",
type=int,
default=1,
help="The minimum number of FT replica for each step.",
)
def to_dict(self):
return self.args_dict
def parse_args(self, args_list: list = sys.argv[1:]):
args, cmd_args = self.parse_args_from_command_line(args_list)
config_file = getattr(args, "job.config_file", None)
# build up a two level dict
args_dict = self._args_to_two_level_dict(args)
if config_file is not None:
try:
with open(config_file, "rb") as f:
for k, v in tomllib.load(f).items():
# to prevent overwrite of non-specified keys
args_dict[k] |= v
except (FileNotFoundError, tomllib.TOMLDecodeError) as e:
logger.exception(
f"Error while loading the configuration file: {config_file}"
)
logger.exception(f"Error details: {str(e)}")
raise e
# Checking string-list arguments are properly split into a list
# if split-points came from 'args' (from cmd line) it would have already been parsed into a list by that parser
string_list_argnames = self._get_string_list_argument_names()
for n in string_list_argnames:
check_string_list_argument(args_dict, n)
# override args dict with cmd_args
cmd_args_dict = self._args_to_two_level_dict(cmd_args)
for section, section_args in cmd_args_dict.items():
for k, v in section_args.items():
args_dict[section][k] = v
self.args_dict = args_dict
for k, v in args_dict.items():
class_type = type(k.title(), (), v)
setattr(self, k, class_type())
self._validate_config()
def _args_to_two_level_dict(self, args: argparse.Namespace) -> defaultdict:
args_dict = defaultdict(defaultdict)
for k, v in vars(args).items():
first_level_key, second_level_key = k.split(".", 1)
args_dict[first_level_key][second_level_key] = v
return args_dict
def _validate_config(self) -> None:
# TODO: Add more mandatory validations
assert self.model.config
assert self.model.tokenizer_path
def _get_string_list_argument_names(self) -> list[str]:
"""Get the parser argument names of type `string_list`."""
string_list_args = [
v.dest for v in self.parser._actions if v.type is string_list
]
return string_list_args
def parse_args_from_command_line(
self, args_list
) -> Tuple[argparse.Namespace, argparse.Namespace]:
"""
Parse command line arguments and return the parsed args and the command line only args
"""
args = self.parser.parse_args(args_list)
string_list_argnames = set(self._get_string_list_argument_names())
# aux parser to parse the command line only args, with no defaults from main parser
aux_parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
for arg, val in vars(args).items():
if isinstance(val, bool):
aux_parser.add_argument(
"--" + arg, action="store_true" if val else "store_false"
)
elif arg in string_list_argnames:
# without this special case, type inference breaks here,
# since the inferred type is just 'list' and it ends up flattening
# e.g. from ["layers.0", "layers.1"] into ["l", "a", "y", "e", "r", "s", ".0", ...]
aux_parser.add_argument("--" + arg, type=string_list)
else:
aux_parser.add_argument("--" + arg, type=type(val))
cmd_args, _ = aux_parser.parse_known_args(args_list)
return args, cmd_args