zaydzuhri's picture
Add files using upload-large-folder tool
bfd666f verified
raw
history blame
24.4 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.utils import chunk_global_cumsum, chunk_local_cumsum
from fla.ops.utils.op import safe_exp
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard, is_intel_alchemist
# https://github.com/intel/intel-xpu-backend-for-triton/issues/3449
triton_config = {'grf_mode': 'large'} if is_intel_alchemist else {}
@triton.heuristics({
'NV': lambda args: triton.cdiv(args['V'], args['BV']),
'OUTPUT_ATTENTIONS': lambda args: args['attn'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None,
'USE_G': lambda args: args['g'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [2, 4, 8, 16]
for num_stages in [2, 3, 4]
],
key=["BT", "BS", "BK", "BV", "USE_G"],
)
@triton.jit
def parallel_simple_gla_fwd_kernel(
q,
k,
v,
g,
o,
attn,
scale,
offsets,
indices,
T,
B: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
NV: tl.constexpr,
OUTPUT_ATTENTIONS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
USE_OFFSETS: tl.constexpr,
USE_G: tl.constexpr
):
tl.static_assert(not (USE_OFFSETS and HEAD_FIRST), "USE_OFFSETS and HEAD_FIRST cannot be True at the same time")
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_k, i_v = i_kv // NV, i_kv % NV
i_b, i_h = i_bh // H, i_bh % H
o += i_k * B * T * H * V
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
q += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
k += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
v += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
o += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
if USE_G:
g += i_bh * T if HEAD_FIRST else bos * H + i_h
if OUTPUT_ATTENTIONS:
attn += (bos * H + i_h * T) * T + i_k * B * H * T * T
stride_qk = K if HEAD_FIRST else H * K
stride_vo = V if HEAD_FIRST else H * V
stride_g = 1 if HEAD_FIRST else H
p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
# the Q block is kept in the shared memory throughout the whole kernel
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
b_o = tl.zeros([BT, BV], dtype=tl.float32)
# [BT]
o_q = i_t * BT + tl.arange(0, BT)
# [BS]
o_k = i_t * BT + tl.arange(0, BS)
# Q block and K block have overlap.
# masks required
if USE_G:
p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_t * BT,), (BT,), (0,))
# [BT,]
b_gq = tl.load(p_gq, boundary_check=(0,)).to(tl.float32)
# rescale interchunk output
else:
b_gq = None
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
p_k = tl.make_block_ptr(k, (K, T), (1, stride_qk), (i_k * BK, i_s), (BK, BS), (0, 1))
p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
# [BK, BS]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BS, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BT, BS]
m_s = o_q[:, None] >= o_k[None, :]
b_s = tl.dot(b_q, b_k)
if USE_G:
p_gk = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,))
b_gk = tl.load(p_gk, boundary_check=(0,))
b_s *= safe_exp(b_gq[:, None] - b_gk[None, :])
b_s = tl.where(m_s, b_s, 0)
else:
b_s = tl.where(m_s, b_s, 0)
# [BT, BV]
if i_s >= 0:
b_o += tl.dot(b_s.to(b_q.dtype), b_v)
if OUTPUT_ATTENTIONS:
p_a = tl.make_block_ptr(attn, (T, T), (T, 1), (i_t * BT, i_s), (BT, BS), (1, 0))
tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1))
o_k += BS
for i_s in range(i_t * BT - BS, -BS, -BS):
p_k = tl.make_block_ptr(k, (K, T), (1, stride_qk), (i_k * BK, i_s), (BK, BS), (0, 1))
p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
# [BK, BS]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BS, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
b_s = tl.dot(b_q, b_k)
if USE_G:
p_g = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
b_gn = tl.load(g + (min(i_s + BS, T) - 1) * stride_g)
b_gp = tl.load(g + (i_s-1) * stride_g) if i_s % BT > 0 else 0.
# No concrete meaning. Just to avoid some layout bugs.
b_s *= safe_exp(b_gq[:, None] + (b_gn - b_g)[None, :])
b_gq += (b_gn - b_gp)
if OUTPUT_ATTENTIONS:
p_a = tl.make_block_ptr(attn, (T, T), (T, 1), (i_t * BT, i_s), (BT, BS), (1, 0))
tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1))
if i_s >= 0:
b_o += tl.dot(b_s.to(b_v.dtype), b_v)
p_o = tl.make_block_ptr(o, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
@triton.jit(do_not_specialize=['T'])
def parallel_simple_gla_bwd_kernel_dq(
i_t,
i_k,
i_v,
q,
k,
v,
g,
do,
dq,
dg,
stride_qk,
stride_vo,
stride_g,
scale,
T,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr
):
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
# [BT, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BT, BK]
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
for i_s in range(0, i_t * BT, BS):
p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0))
p_v = tl.make_block_ptr(v, (V, T), (1, stride_vo), (i_v * BV, i_s), (BV, BS), (0, 1))
# [BS, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BV, BS]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BT, BV] @ [BV, BS] = [BT, BS]
b_ds = tl.dot(b_do, b_v)
if USE_G:
p_g = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
b_gn = tl.load(g + (min(i_s + BS, T) - 1) * stride_g)
b_gp = tl.load(g + (i_s - 1) * stride_g) if i_s % BT > 0 else 0.
b_ds *= safe_exp(b_gn - b_g)[None, :]
if i_s > 0:
b_dq *= safe_exp(b_gn - b_gp)
# [BT, BS] @ [BS, BK] = [BT, BK]
b_dq += tl.dot(b_ds.to(b_v.dtype), b_k)
if USE_G:
p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_t * BT,), (BT,), (0,))
# [BT,]
b_gq = tl.load(p_gq, boundary_check=(0,))
# [BT, BK]
b_dq *= safe_exp(b_gq)[:, None]
# [BT]
o_q = i_t * BT + tl.arange(0, BT)
# [BS]
o_k = i_t * BT + tl.arange(0, BS)
# Q block and K block have overlap. masks required
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0))
p_v = tl.make_block_ptr(v, (V, T), (1, stride_vo), (i_v * BV, i_s), (BV, BS), (0, 1))
# [BS, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BV, BS]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BT, BV] @ [BV, BS] = [BT, BS]
b_ds = tl.dot(b_do, b_v)
if USE_G:
p_gk = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,))
b_gk = tl.load(p_gk, boundary_check=(0,))
b_ds *= safe_exp(b_gq[:, None] - b_gk[None, :])
b_ds = tl.where(o_q[:, None] >= o_k[None, :], b_ds, 0)
# [BT, BK]
b_dq += tl.dot(b_ds.to(b_k.dtype), b_k)
o_k += BS
b_dq *= scale
p_dq = tl.make_block_ptr(dq, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
if USE_G:
p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_dg = tl.sum(b_dq * b_q, 1)
p_dg = tl.make_block_ptr(dg, (T,), (stride_g,), (i_t * BT,), (BT,), (0,))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
@triton.jit(do_not_specialize=['T'])
def parallel_simple_gla_bwd_kernel_dkv(
i_t,
i_k,
i_v,
q,
k,
v,
g,
do,
dk,
dv,
dg,
scale,
stride_qk,
stride_vo,
stride_g,
T,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr
):
# [BT, BK]
p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
# [BT, BV]
p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
if USE_G:
p_gk = tl.make_block_ptr(g, (T,), (stride_g,), (i_t * BT,), (BT,), (0,))
b_gk = tl.load(p_gk, boundary_check=(0,))
NTS = tl.cdiv(T, BS)
# [BT, BK]
for i_s in range(NTS * BS - BS, (i_t + 1) * BT - BS, -BS):
p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0))
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_ds = tl.dot(b_v, tl.trans(b_do))
b_s = tl.dot(b_k, tl.trans(b_q))
if USE_G:
p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,))
b_gq = tl.load(p_gq, boundary_check=(0,))
b_gp = tl.load(g + (min(i_s + BS, T) - 1) * stride_g)
b_gn = tl.load(g + (i_s - 1) * stride_g) if i_s % BT > 0 else 0.
if i_s >= 0:
tmp = safe_exp(b_gp - b_gn)
b_dk *= tmp
b_dv *= tmp
tmp2 = safe_exp(b_gq - b_gn)
b_ds *= tmp2[None, :]
b_s *= tmp2[None, :]
# [BT, BK]
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
# [BT, BV]
b_dv += tl.dot(b_s.to(b_do.dtype), b_do)
if USE_G:
b_g_last = tl.load(g + (min(i_t * BT + BT, T) - 1) * stride_g)
if i_t >= 0:
tmp2 = safe_exp(b_g_last - b_gk)[:, None]
b_dk *= tmp2
b_dv *= tmp2
o_q = i_t * BT + tl.arange(0, BS)
o_k = i_t * BT + tl.arange(0, BT)
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
p_q = tl.make_block_ptr(q, (T, K), (stride_qk, 1), (i_s, i_k * BK), (BS, BK), (1, 0))
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
# [BS, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
# [BS, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BS]
b_ds = tl.dot(b_v, tl.trans(b_do))
b_s = tl.dot(b_k, tl.trans(b_q))
if USE_G:
p_gq = tl.make_block_ptr(g, (T,), (stride_g,), (i_s,), (BS,), (0,))
b_gq = tl.load(p_gq, boundary_check=(0,))
if i_s >= 0:
tmp = safe_exp(-b_gk[:, None] + b_gq[None, :])
b_ds *= tmp
b_s *= tmp
m_s = o_k[:, None] <= o_q[None, :]
b_s = tl.where(m_s, b_s, 0)
b_ds = tl.where(m_s, b_ds, 0)
# [BT, BK]
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
b_dv += tl.dot(b_s.to(b_do.dtype), b_do)
o_q += BS
b_dk *= scale
b_dv *= scale
p_dk = tl.make_block_ptr(dk, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dv = tl.make_block_ptr(dv, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
if USE_G:
p_dg = tl.make_block_ptr(dg, (T,), (stride_g,), (i_t * BT,), (BT,), (0,))
b_dg = tl.load(p_dg, boundary_check=(0,))
b_dg -= tl.sum(b_dk * b_k, 1)
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
@triton.heuristics({
'NV': lambda args: triton.cdiv(args['V'], args['BV']),
'USE_OFFSETS': lambda args: args['offsets'] is not None,
'USE_G': lambda args: args['g'] is not None
})
@triton.autotune(
configs=[
triton.Config(triton_config, num_warps=num_warps)
for num_warps in [2, 4, 8, 16]
],
key=['BT', 'BS', 'BK', 'BV', 'USE_G'],
)
@triton.jit(do_not_specialize=['T'])
def parallel_simple_gla_bwd_kernel(
q,
k,
v,
g,
do,
dq,
dk,
dv,
dg,
scale,
offsets,
indices,
T,
B: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
NV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
USE_G: tl.constexpr
):
tl.static_assert(not (USE_OFFSETS and HEAD_FIRST), "USE_OFFSETS and HEAD_FIRST cannot be True at the same time")
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_k, i_v = i_kv // NV, i_kv % NV
i_b, i_h = i_bh // H, i_bh % H
dq += i_v * B * H * T * K
dk += i_v * B * H * T * K
dv += i_k * B * H * T * V
if USE_G:
dg += i_kv * B * H * T
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
q += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K
k += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K
v += (i_bh * T * V) if HEAD_FIRST else (bos * H + i_h) * V
do += (i_bh * T * V) if HEAD_FIRST else (bos * H + i_h) * V
dq += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K
dk += (i_bh * T * K) if HEAD_FIRST else (bos * H + i_h) * K
dv += (i_bh * T * V) if HEAD_FIRST else (bos * H + i_h) * V
if USE_G:
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
dg += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
stride_qk = K if HEAD_FIRST else H * K
stride_vo = V if HEAD_FIRST else H * V
stride_g = 1 if HEAD_FIRST else H
parallel_simple_gla_bwd_kernel_dq(
i_t=i_t,
i_k=i_k,
i_v=i_v,
q=q,
k=k,
v=v,
g=g,
do=do,
dq=dq,
dg=dg,
scale=scale,
stride_qk=stride_qk,
stride_vo=stride_vo,
stride_g=stride_g,
T=T,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV,
USE_G=USE_G
)
tl.debug_barrier()
parallel_simple_gla_bwd_kernel_dkv(
i_t=i_t,
i_k=i_k,
i_v=i_v,
q=q,
k=k,
v=v,
g=g,
do=do,
dk=dk,
dv=dv,
dg=dg,
scale=scale,
stride_qk=stride_qk,
stride_vo=stride_vo,
stride_g=stride_g,
T=T,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV,
USE_G=USE_G
)
def parallel_simple_gla_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
scale: float,
output_attentions: bool = False,
chunk_size: int = 128,
head_first: bool = True,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
BT, BS = chunk_size, 32
if check_shared_mem('hopper', k.device.index):
BK = min(256, triton.next_power_of_2(K))
BV = min(256, triton.next_power_of_2(V))
elif check_shared_mem('ampere', k.device.index):
BK = min(128, triton.next_power_of_2(K))
BV = min(128, triton.next_power_of_2(V))
else:
BK = min(64, triton.next_power_of_2(K))
BV = min(64, triton.next_power_of_2(V))
NK = triton.cdiv(K, BK)
NV = triton.cdiv(V, BV)
assert BT % BS == 0
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
# local cumulative decay in log space
if g is not None:
g = chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=head_first)
grid = (NK * NV, NT, B * H)
o = torch.empty(NK, *v.shape, dtype=v.dtype if NK == 1 else torch.float, device=q.device)
attn = q.new_zeros(NK, B, H, T, T) if output_attentions else None
parallel_simple_gla_fwd_kernel[grid](
q=q,
k=k,
v=v,
g=g,
o=o,
attn=attn,
scale=scale,
offsets=offsets,
indices=indices,
B=B,
H=H,
T=T,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV,
HEAD_FIRST=head_first,
)
o = o.sum(0)
if output_attentions:
attn = attn.sum(0)
return o, g, attn
def parallel_simple_gla_bwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
do: torch.Tensor,
scale: float,
chunk_size: int = 128,
head_first: bool = True,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
BT, BS = chunk_size, 32
if check_shared_mem('hopper', k.device.index):
BK = min(256, triton.next_power_of_2(K))
BV = min(256, triton.next_power_of_2(V))
elif check_shared_mem('ampere', k.device.index):
BK = min(128, triton.next_power_of_2(K))
BV = min(128, triton.next_power_of_2(V))
elif check_shared_mem('ada', k.device.index):
BK = min(64, triton.next_power_of_2(K))
BV = min(64, triton.next_power_of_2(V))
else:
BK = min(32, triton.next_power_of_2(K))
BV = min(32, triton.next_power_of_2(V))
NK = triton.cdiv(K, BK)
NV = triton.cdiv(V, BV)
assert BT % BS == 0
dq = torch.empty(NV, * q.shape, dtype=q.dtype if NV == 1 else torch.float, device=q.device)
dk = torch.empty(NV, * k.shape, dtype=k.dtype if NV == 1 else torch.float, device=q.device)
dv = torch.empty(NK, * v.shape, dtype=v.dtype if NK == 1 else torch.float, device=q.device)
dg = torch.empty(NK*NV, *g.shape, dtype=torch.float, device=q.device) if g is not None else None
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
grid = (NK * NV, NT, B * H)
parallel_simple_gla_bwd_kernel[grid](
q=q,
k=k,
v=v,
g=g,
do=do,
dq=dq,
dk=dk,
dv=dv,
dg=dg,
offsets=offsets,
indices=indices,
scale=scale,
T=T,
B=B,
H=H,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV,
HEAD_FIRST=head_first
)
dq = dq.sum(0)
dk = dk.sum(0)
dv = dv.sum(0)
dg = chunk_global_cumsum(dg.sum(0), reverse=True, head_first=head_first, offsets=offsets) if g is not None else None
return dq, dk, dv, dg
class ParallelSimpleGLAFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(ctx, q, k, v, g, scale, output_attentions, head_first, offsets):
chunk_size = 128
ctx.dtype = q.dtype
# 2-d indices denoting the offsets of chunks in each sequence
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
indices = None
if offsets is not None:
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()])
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
o, g, attn = parallel_simple_gla_fwd(
q=q,
k=k,
v=v,
g=g,
scale=scale,
output_attentions=output_attentions,
head_first=head_first,
offsets=offsets,
indices=indices,
chunk_size=chunk_size)
ctx.save_for_backward(q, k, v, g, offsets, indices)
ctx.scale = scale
ctx.chunk_size = chunk_size
ctx.head_first = head_first
return o.to(q.dtype), attn
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(ctx, do, da=None):
q, k, v, g, offsets, indices = ctx.saved_tensors
dq, dk, dv, dg = parallel_simple_gla_bwd(
q=q,
k=k,
v=v,
g=g,
do=do,
scale=ctx.scale,
chunk_size=ctx.chunk_size,
offsets=offsets,
indices=indices,
head_first=ctx.head_first)
return dq.to(q), dk.to(k), dv.to(v), dg.to(ctx.dtype) if dg is not None else None, None, None, None, None
def parallel_simple_gla(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
output_attentions: bool = False,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
k (torch.Tensor):
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
v (torch.Tensor):
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`
g (torch.Tensor):
Forget gates of shape `[B, H, T]` if `head_first=True` else `[B, T, H]`.
Compared to GLA, the gating is head-wise instead of elementwise.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
output_attentions (bool):
Whether to output the materialized attention scores of shape [B, H, T, T]. Default: `False`.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `True`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
Returns:
o (torch.Tensor):
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
attn (torch.Tensor):
Attention scores of shape `[B, H, T, T]` if `output_attentions=True` else `None`
"""
if scale is None:
scale = k.shape[-1] ** -0.5
if cu_seqlens is not None:
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
assert not head_first, "head_first must be False when cu_seqlens are provided"
if g is not None:
g = g.float()
if output_attentions:
assert cu_seqlens is None, "output_attentions=True is not supported with variable-length sequences"
o, attn = ParallelSimpleGLAFunction.apply(q, k, v, g, scale, output_attentions, head_first, cu_seqlens)
return o, attn