Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fla/ops/abc/__init__.py +7 -0
- fla/ops/abc/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/abc/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/abc/chunk.py +1116 -0
- fla/ops/abc/naive.py +96 -0
- fla/ops/based/__init__.py +9 -0
- fla/ops/based/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/based/__pycache__/fused_chunk.cpython-311.pyc +0 -0
- fla/ops/based/__pycache__/parallel.cpython-311.pyc +0 -0
- fla/ops/based/fused_chunk.py +374 -0
- fla/ops/based/naive.py +72 -0
- fla/ops/based/parallel.py +410 -0
- fla/ops/common/__init__.py +1 -0
- fla/ops/common/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/common/__pycache__/chunk_delta_h.cpython-311.pyc +0 -0
- fla/ops/common/__pycache__/chunk_h.cpython-311.pyc +0 -0
- fla/ops/common/__pycache__/chunk_o.cpython-311.pyc +0 -0
- fla/ops/common/__pycache__/chunk_scaled_dot_kkt.cpython-311.pyc +0 -0
- fla/ops/common/__pycache__/fused_recurrent.cpython-311.pyc +0 -0
- fla/ops/common/__pycache__/utils.cpython-311.pyc +0 -0
- fla/ops/common/chunk_delta_h.py +399 -0
- fla/ops/common/chunk_h.py +422 -0
- fla/ops/common/chunk_h_parallel.py +650 -0
- fla/ops/common/chunk_h_split.py +677 -0
- fla/ops/common/chunk_o.py +668 -0
- fla/ops/common/chunk_scaled_dot_kkt.py +126 -0
- fla/ops/common/fused_recurrent.py +575 -0
- fla/ops/common/utils.py +69 -0
- fla/ops/forgetting_attn/__init__.py +7 -0
- fla/ops/forgetting_attn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/forgetting_attn/__pycache__/parallel.cpython-311.pyc +0 -0
- fla/ops/forgetting_attn/parallel.py +708 -0
- fla/ops/generalized_delta_rule/dplr/__init__.py +7 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_A_bwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_A_fwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_h_bwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_h_fwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_o_bwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_o_fwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/fused_recurrent.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/wy_fast_bwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/__pycache__/wy_fast_fwd.cpython-311.pyc +0 -0
- fla/ops/generalized_delta_rule/dplr/chunk_o_bwd.py +464 -0
- fla/ops/linear_attn/__init__.py +11 -0
- fla/ops/linear_attn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/ops/linear_attn/__pycache__/chunk.cpython-311.pyc +0 -0
- fla/ops/linear_attn/__pycache__/fused_chunk.cpython-311.pyc +0 -0
- fla/ops/linear_attn/__pycache__/fused_recurrent.cpython-311.pyc +0 -0
fla/ops/abc/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_abc
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'chunk_abc'
|
7 |
+
]
|
fla/ops/abc/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (236 Bytes). View file
|
|
fla/ops/abc/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (73.4 kB). View file
|
|
fla/ops/abc/chunk.py
ADDED
@@ -0,0 +1,1116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils import logcumsumexp_fwd_kernel, softmax_bwd, softmax_fwd
|
11 |
+
from fla.ops.utils.op import exp
|
12 |
+
from fla.utils import input_guard
|
13 |
+
|
14 |
+
|
15 |
+
@triton.jit(do_not_specialize=['T'])
|
16 |
+
def chunk_abc_fwd_kernel_h(
|
17 |
+
k,
|
18 |
+
v,
|
19 |
+
z,
|
20 |
+
h,
|
21 |
+
h0,
|
22 |
+
ht,
|
23 |
+
T,
|
24 |
+
K: tl.constexpr,
|
25 |
+
V: tl.constexpr,
|
26 |
+
BT: tl.constexpr,
|
27 |
+
BK: tl.constexpr,
|
28 |
+
BV: tl.constexpr,
|
29 |
+
NT: tl.constexpr,
|
30 |
+
NORMK: tl.constexpr,
|
31 |
+
USE_INITIAL_STATE: tl.constexpr,
|
32 |
+
STORE_FINAL_STATE: tl.constexpr
|
33 |
+
):
|
34 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
35 |
+
|
36 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
37 |
+
if USE_INITIAL_STATE:
|
38 |
+
p_h = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
39 |
+
b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
40 |
+
if NORMK:
|
41 |
+
p_z0 = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), (i_k * BK,), (BK,), (0,))
|
42 |
+
else:
|
43 |
+
p_z0 = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), (i_v * BV,), (BV,), (0,))
|
44 |
+
b_zp = tl.load(p_z0).to(tl.float32)
|
45 |
+
for i_t in range(NT):
|
46 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
47 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
48 |
+
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
49 |
+
|
50 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
51 |
+
# [BK, BT]
|
52 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
53 |
+
# [BT, BV]
|
54 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
55 |
+
if NORMK:
|
56 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), ((i_t * BT + BT - 1) * K + i_k * BK,), (BK,), (0,))
|
57 |
+
# [BK,]
|
58 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
59 |
+
b_r, b_zp = exp(b_zp - b_zc), b_zc
|
60 |
+
# [BK, BV]
|
61 |
+
b_h = b_h * b_r[:, None]
|
62 |
+
b_k = exp(b_k - b_zc[:, None]).to(b_k.dtype)
|
63 |
+
else:
|
64 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), ((i_t * BT + BT - 1) * V + i_v * BV,), (BV,), (0,))
|
65 |
+
# [BV,]
|
66 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
67 |
+
b_r, b_zp = exp(b_zp - b_zc), b_zc
|
68 |
+
# [BK, BV]
|
69 |
+
b_h = b_h * b_r[None, :]
|
70 |
+
b_v = exp(b_v - b_zc[None, :]).to(b_v.dtype)
|
71 |
+
# [BK, BV]
|
72 |
+
b_h += tl.dot(b_k, b_v, allow_tf32=False)
|
73 |
+
|
74 |
+
if STORE_FINAL_STATE:
|
75 |
+
p_h = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
76 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
77 |
+
|
78 |
+
|
79 |
+
@triton.jit(do_not_specialize=['T'])
|
80 |
+
def chunk_abc_fwd_kernel_intra_K(
|
81 |
+
v,
|
82 |
+
z,
|
83 |
+
o,
|
84 |
+
A,
|
85 |
+
T,
|
86 |
+
V: tl.constexpr,
|
87 |
+
BT: tl.constexpr,
|
88 |
+
BC: tl.constexpr,
|
89 |
+
BV: tl.constexpr,
|
90 |
+
NC: tl.constexpr
|
91 |
+
):
|
92 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
93 |
+
i_t, i_i = i_c // NC, i_c % NC
|
94 |
+
|
95 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
96 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), ((i_t * BT + i_i * BC) * V + i_v * BV,), (BV,), (0,))
|
97 |
+
# [BV,]
|
98 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
99 |
+
# [BC, BV]
|
100 |
+
b_o = tl.zeros([BC, BV], dtype=tl.float32)
|
101 |
+
for i_j in range(0, i_i):
|
102 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
103 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
104 |
+
# [BC, BV]
|
105 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
106 |
+
# [BC, BC]
|
107 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
108 |
+
b_o += tl.dot(b_A, exp(b_v - b_zn[None, :]).to(b_v.dtype), allow_tf32=False)
|
109 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
110 |
+
b_o *= exp(b_zn[None, :] - b_z)
|
111 |
+
|
112 |
+
o_i = tl.arange(0, BC)
|
113 |
+
o_A = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_i * BC
|
114 |
+
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
115 |
+
for j in range(0, BC):
|
116 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T * V,), (1,), ((i_t * BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,))
|
117 |
+
# [BC,]
|
118 |
+
b_A = tl.load(A + o_A + j, mask=m_A, other=0)
|
119 |
+
# [BV,]
|
120 |
+
b_v = tl.load(p_v, boundary_check=(0,)).to(tl.float32)
|
121 |
+
# [BC, BV]
|
122 |
+
# avoid 0 * inf = inf
|
123 |
+
m_i = o_i[:, None] >= j
|
124 |
+
b_o += tl.where(m_i, b_A[:, None] * exp(b_v[None, :] - b_z), 0)
|
125 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
126 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
127 |
+
|
128 |
+
|
129 |
+
@triton.jit(do_not_specialize=['T'])
|
130 |
+
def chunk_abc_fwd_kernel_K(
|
131 |
+
q,
|
132 |
+
k,
|
133 |
+
z,
|
134 |
+
h,
|
135 |
+
o,
|
136 |
+
A,
|
137 |
+
scale,
|
138 |
+
T,
|
139 |
+
K: tl.constexpr,
|
140 |
+
V: tl.constexpr,
|
141 |
+
BT: tl.constexpr,
|
142 |
+
BK: tl.constexpr,
|
143 |
+
BV: tl.constexpr,
|
144 |
+
NT: tl.constexpr
|
145 |
+
):
|
146 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
147 |
+
i_p = tl.maximum(i_t * BT - 1, 0)
|
148 |
+
|
149 |
+
o_i = tl.arange(0, BT)
|
150 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
151 |
+
|
152 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
153 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
154 |
+
for i_k in range(tl.cdiv(K, BK)):
|
155 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
156 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
157 |
+
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
158 |
+
|
159 |
+
# [BT, BK]
|
160 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
161 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
162 |
+
# [BK, BT]
|
163 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
164 |
+
# [BK, BV]
|
165 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
166 |
+
# [BT, BV]
|
167 |
+
b_o += tl.dot(b_q, b_h, allow_tf32=False)
|
168 |
+
# [BT, BT]
|
169 |
+
b_A += tl.dot(b_q, b_k, allow_tf32=False)
|
170 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
171 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
172 |
+
# [BT, BV]
|
173 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
174 |
+
# [BT, BV]
|
175 |
+
p_zp = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), (i_p * V + i_v * BV,), (BV,), (0,))
|
176 |
+
b_zp = tl.load(p_zp, boundary_check=(0,))
|
177 |
+
b_o = b_o * exp(b_zp[None, :] - b_z)
|
178 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
179 |
+
|
180 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
181 |
+
# [BT, BT]
|
182 |
+
b_A = tl.where(m_s, b_A, 0.)
|
183 |
+
if i_v == 0:
|
184 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
185 |
+
|
186 |
+
|
187 |
+
@triton.jit(do_not_specialize=['T'])
|
188 |
+
def chunk_abc_fwd_kernel_intra_V(
|
189 |
+
q,
|
190 |
+
k,
|
191 |
+
z,
|
192 |
+
A,
|
193 |
+
scale,
|
194 |
+
T,
|
195 |
+
K: tl.constexpr,
|
196 |
+
BT: tl.constexpr,
|
197 |
+
BC: tl.constexpr,
|
198 |
+
BK: tl.constexpr,
|
199 |
+
NC: tl.constexpr
|
200 |
+
):
|
201 |
+
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
202 |
+
i_t, i_i, i_j = i_c // (NC * NC), (i_c % (NC * NC)) // NC, (i_c % (NC * NC)) % NC
|
203 |
+
n_bh = tl.num_programs(2)
|
204 |
+
|
205 |
+
if i_i > i_j:
|
206 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
207 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
|
208 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
209 |
+
p_A = tl.make_block_ptr(A + (i_k*n_bh+i_bh)*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
210 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), ((i_t * BT + i_i * BC) * K + i_k * BK,), (BK,), (0,))
|
211 |
+
# [BK,]
|
212 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
213 |
+
# [BC, BK]
|
214 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
215 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
216 |
+
b_q = (b_q * exp(b_zn[None, :] - b_z) * scale).to(b_q.dtype)
|
217 |
+
# [BK, BC]
|
218 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
219 |
+
b_k = exp(b_k - b_zn[:, None]).to(b_k.dtype)
|
220 |
+
# [BC, BC]
|
221 |
+
b_A = tl.dot(b_q, b_k, allow_tf32=False)
|
222 |
+
tl.store(p_A, b_A.to(A.dtype.element_ty), boundary_check=(0, 1))
|
223 |
+
elif i_i == i_j:
|
224 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
225 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T * K,), (1,), ((i_t * BT + i_j * BC) * K + i_k * BK,), (BK,), (0,))
|
226 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
227 |
+
# [BC, BK]
|
228 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
229 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
230 |
+
|
231 |
+
o_i = tl.arange(0, BC)
|
232 |
+
o_A = (i_bh + i_k * n_bh) * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_j * BC
|
233 |
+
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
234 |
+
for j in range(0, BC):
|
235 |
+
# [BK,]
|
236 |
+
b_k = tl.load(p_k, boundary_check=(0,)).to(tl.float32)
|
237 |
+
# [BC,]
|
238 |
+
b_A = tl.sum(b_q * exp(b_k[None, :] - b_z) * scale, 1)
|
239 |
+
b_A = tl.where(o_i >= j, b_A, 0.)
|
240 |
+
tl.store(A + o_A + j, b_A.to(b_q.dtype), mask=m_A)
|
241 |
+
|
242 |
+
p_k = tl.advance(p_k, (K,))
|
243 |
+
|
244 |
+
|
245 |
+
@triton.jit(do_not_specialize=['T'])
|
246 |
+
def chunk_abc_fwd_kernel_V(
|
247 |
+
q,
|
248 |
+
v,
|
249 |
+
z,
|
250 |
+
h,
|
251 |
+
o,
|
252 |
+
A,
|
253 |
+
scale,
|
254 |
+
T,
|
255 |
+
K: tl.constexpr,
|
256 |
+
V: tl.constexpr,
|
257 |
+
BT: tl.constexpr,
|
258 |
+
BK: tl.constexpr,
|
259 |
+
BV: tl.constexpr,
|
260 |
+
NT: tl.constexpr
|
261 |
+
):
|
262 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
263 |
+
i_p = tl.maximum(i_t * BT - 1, 0)
|
264 |
+
|
265 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
266 |
+
for i_k in range(tl.cdiv(K, BK)):
|
267 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
268 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
269 |
+
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
270 |
+
p_zp = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), (i_p * K + i_k * BK,), (BK,), (0,))
|
271 |
+
|
272 |
+
# [BT, BK]
|
273 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
274 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
275 |
+
# [BT, BK]
|
276 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
277 |
+
# [BT, BK]
|
278 |
+
b_zp = tl.load(p_zp, boundary_check=(0,))
|
279 |
+
b_q = (b_q * exp(b_zp[None, :] - b_z)).to(b_q.dtype)
|
280 |
+
# [BK, BV]
|
281 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
282 |
+
# works but dkw, owing to divine benevolence
|
283 |
+
# [BT, BV]
|
284 |
+
if i_k >= 0:
|
285 |
+
b_o += tl.dot(b_q, b_h, allow_tf32=False)
|
286 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
287 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
288 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
289 |
+
# [BT, BV]
|
290 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
291 |
+
# [BT, BT]
|
292 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
293 |
+
b_o += tl.dot(b_A.to(b_v.dtype), b_v, allow_tf32=False)
|
294 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
295 |
+
|
296 |
+
|
297 |
+
@triton.jit(do_not_specialize=['T'])
|
298 |
+
def chunk_abc_bwd_kernel_dh(
|
299 |
+
q,
|
300 |
+
z,
|
301 |
+
do,
|
302 |
+
dh,
|
303 |
+
scale,
|
304 |
+
T,
|
305 |
+
K: tl.constexpr,
|
306 |
+
V: tl.constexpr,
|
307 |
+
BT: tl.constexpr,
|
308 |
+
BK: tl.constexpr,
|
309 |
+
BV: tl.constexpr,
|
310 |
+
NT: tl.constexpr,
|
311 |
+
NORMK: tl.constexpr
|
312 |
+
):
|
313 |
+
i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
314 |
+
|
315 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
316 |
+
b_zp = tl.full([BK if NORMK else BV], float('inf'), dtype=tl.float32)
|
317 |
+
for i_t in range(NT - 1, -1, -1):
|
318 |
+
i_p = tl.maximum(i_t * BT - 1, 0)
|
319 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
320 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
321 |
+
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
322 |
+
|
323 |
+
# [BK, BT]
|
324 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
325 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
326 |
+
# [BT, BV]
|
327 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
328 |
+
|
329 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
330 |
+
if NORMK:
|
331 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
332 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), (i_p * K + i_k * BK,), (BK,), (0,))
|
333 |
+
# [BK,]
|
334 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
335 |
+
b_r, b_zp = exp(b_zc - b_zp), b_zc
|
336 |
+
# [BK, BT]
|
337 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
338 |
+
b_q = (b_q * exp(b_zc[:, None] - b_z)).to(b_q.dtype)
|
339 |
+
# [BK, BV]
|
340 |
+
b_dh = b_dh * b_r[:, None]
|
341 |
+
else:
|
342 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
343 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), (i_p * V + i_v * BV,), (BV,), (0,))
|
344 |
+
# [BV,]
|
345 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
346 |
+
b_r, b_zp = exp(b_zc - b_zp), b_zc
|
347 |
+
# [BT, BV]
|
348 |
+
b_z = tl.load(p_z, boundary_check=(0,))
|
349 |
+
b_do = (b_do * exp(b_zc[None, :] - b_z)).to(b_do.dtype)
|
350 |
+
# [BK, BV]
|
351 |
+
b_dh = b_dh * b_r[None, :]
|
352 |
+
# [BK, BV]
|
353 |
+
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
|
354 |
+
|
355 |
+
|
356 |
+
@triton.jit(do_not_specialize=['T'])
|
357 |
+
def chunk_abc_bwd_kernel_V(
|
358 |
+
k,
|
359 |
+
v,
|
360 |
+
z,
|
361 |
+
h,
|
362 |
+
A,
|
363 |
+
do,
|
364 |
+
dh,
|
365 |
+
dq,
|
366 |
+
dk,
|
367 |
+
dv,
|
368 |
+
dA,
|
369 |
+
scale,
|
370 |
+
T,
|
371 |
+
K: tl.constexpr,
|
372 |
+
V: tl.constexpr,
|
373 |
+
BT: tl.constexpr,
|
374 |
+
BK: tl.constexpr,
|
375 |
+
BV: tl.constexpr,
|
376 |
+
NT: tl.constexpr
|
377 |
+
):
|
378 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
379 |
+
i_p = tl.maximum(i_t * BT - 1, 0)
|
380 |
+
n_bh = tl.num_programs(2)
|
381 |
+
|
382 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
383 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), ((i_t * BT + BT - 1) * K + i_k * BK,), (BK,), (0,))
|
384 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1))
|
385 |
+
|
386 |
+
# [BK,]
|
387 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
388 |
+
# [BT, BK]
|
389 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
390 |
+
b_k = exp(b_k - b_zc[None, :]).to(b_k.dtype)
|
391 |
+
# [BT, BT]
|
392 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
393 |
+
|
394 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
395 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
396 |
+
b_dA = tl.zeros([BT, BT], dtype=tl.float32)
|
397 |
+
for i_v in range(tl.cdiv(V, BV)):
|
398 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
399 |
+
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * V * K, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
400 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
401 |
+
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
402 |
+
p_dv = tl.make_block_ptr(dv + (i_k*n_bh+i_bh) * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
403 |
+
|
404 |
+
# [BT, BV]
|
405 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
406 |
+
# [BV, BK]
|
407 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
408 |
+
# [BT, BV]
|
409 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
410 |
+
# [BK, BV]
|
411 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
412 |
+
|
413 |
+
# [BT, BV]
|
414 |
+
b_dv = tl.dot(b_k, b_dh, allow_tf32=False)
|
415 |
+
if i_k == 0:
|
416 |
+
b_dv += tl.dot(b_A.to(b_do.dtype), b_do, allow_tf32=False)
|
417 |
+
b_do = (b_do * scale).to(b_do.dtype)
|
418 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
419 |
+
# [BT, BT]
|
420 |
+
b_dA += tl.dot(b_do, tl.trans(b_v), allow_tf32=False)
|
421 |
+
# [BT, BK]
|
422 |
+
b_dq += tl.dot(b_do, b_h, allow_tf32=False)
|
423 |
+
# [BT, BK]
|
424 |
+
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False)
|
425 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
426 |
+
p_zp = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), (i_p * K + i_k * BK,), (BK,), (0,))
|
427 |
+
# [BK,]
|
428 |
+
b_zp = tl.load(p_zp, boundary_check=(0,))
|
429 |
+
# [BT, BK]
|
430 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
431 |
+
b_z = exp(b_zp[None, :] - b_z)
|
432 |
+
# [BT, BK]
|
433 |
+
b_dq = b_dq * b_z
|
434 |
+
b_dk = b_dk * b_k
|
435 |
+
|
436 |
+
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
437 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
438 |
+
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT,), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
439 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
440 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
441 |
+
|
442 |
+
o_i = tl.arange(0, BT)
|
443 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
444 |
+
# [BT, BT]
|
445 |
+
b_dA = tl.where(m_s, b_dA, 0.).to(b_k.dtype)
|
446 |
+
if i_k == 0:
|
447 |
+
tl.store(p_dA, b_dA.to(p_dA.dtype.element_ty), boundary_check=(0, 1))
|
448 |
+
|
449 |
+
|
450 |
+
@triton.jit(do_not_specialize=['T'])
|
451 |
+
def chunk_abc_bwd_kernel_intra_V(
|
452 |
+
q,
|
453 |
+
k,
|
454 |
+
z,
|
455 |
+
dA,
|
456 |
+
dq,
|
457 |
+
dk,
|
458 |
+
T,
|
459 |
+
K: tl.constexpr,
|
460 |
+
BT: tl.constexpr,
|
461 |
+
BC: tl.constexpr,
|
462 |
+
BK: tl.constexpr,
|
463 |
+
NC: tl.constexpr
|
464 |
+
):
|
465 |
+
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
466 |
+
i_t, i_i = i_c // NC, i_c % NC
|
467 |
+
|
468 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
469 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), ((i_t * BT + i_i * BC) * K + i_k * BK,), (BK,), (0,))
|
470 |
+
# [BK,]
|
471 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
472 |
+
# [BC, BK]
|
473 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
474 |
+
b_zq = exp(b_zn[None, :] - b_z)
|
475 |
+
b_dq = tl.zeros([BC, BK], dtype=tl.float32)
|
476 |
+
for i_j in range(0, i_i):
|
477 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
478 |
+
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
479 |
+
# [BC, BK]
|
480 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
481 |
+
b_kz = exp(b_k - b_zn[None, :]).to(b_k.dtype)
|
482 |
+
# [BC, BC]
|
483 |
+
b_dA = tl.load(p_dA, boundary_check=(0, 1))
|
484 |
+
# [BC, BK]
|
485 |
+
b_dq += tl.dot(b_dA, b_kz, allow_tf32=False)
|
486 |
+
b_dq *= b_zq
|
487 |
+
|
488 |
+
o_i = tl.arange(0, BC)
|
489 |
+
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_i * BC
|
490 |
+
m_dA = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
491 |
+
for j in range(0, BC):
|
492 |
+
p_kj = tl.make_block_ptr(k + i_bh * T*K, (T * K,), (1,), ((i_t * BT + i_i*BC+j) * K + i_k * BK,), (BK,), (0,))
|
493 |
+
# [BC,]
|
494 |
+
b_dA = tl.load(dA + o_dA + j, mask=m_dA, other=0)
|
495 |
+
# [BK,]
|
496 |
+
b_kj = tl.load(p_kj, boundary_check=(0,)).to(tl.float32)
|
497 |
+
# [BC, BK]
|
498 |
+
m_i = o_i[:, None] >= j
|
499 |
+
# [BC, BK]
|
500 |
+
b_dq += tl.where(m_i, b_dA[:, None] * exp(b_kj[None, :] - b_z), 0.)
|
501 |
+
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
502 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
503 |
+
|
504 |
+
tl.debug_barrier()
|
505 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
506 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*K, (T*K,), (1,), ((i_t * BT + i_i * BC + BC - 1) * K + i_k * BK,), (BK,), (0,))
|
507 |
+
# [BK,]
|
508 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
509 |
+
# [BC, BK]
|
510 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
511 |
+
b_kz = exp(b_k - b_zn[None, :])
|
512 |
+
b_dk = tl.zeros([BC, BK], dtype=tl.float32)
|
513 |
+
for i_j in range(i_i + 1, NC):
|
514 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
515 |
+
p_z = tl.make_block_ptr(z + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
|
516 |
+
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + i_j * BC, i_i * BC), (BC, BC), (1, 0))
|
517 |
+
# [BC, BK]
|
518 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
519 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
520 |
+
b_qz = (b_q * exp(b_zn[None, :] - b_z)).to(b_q.dtype)
|
521 |
+
# [BC, BC]
|
522 |
+
b_dA = tl.load(p_dA, boundary_check=(0, 1))
|
523 |
+
# [BC, BK]
|
524 |
+
b_dk += tl.dot(tl.trans(b_dA), b_qz, allow_tf32=False)
|
525 |
+
b_dk *= b_kz
|
526 |
+
|
527 |
+
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC) * BT + i_i * BC + tl.arange(0, BC)
|
528 |
+
for j in range(0, BC):
|
529 |
+
p_qj = tl.make_block_ptr(q + i_bh * T*K, (T * K,), (1,), ((i_t * BT + i_i * BC + j) * K + i_k * BK,), (BK,), (0,))
|
530 |
+
p_zj = tl.make_block_ptr(z + i_bh * T*K, (T * K,), (1,), ((i_t * BT + i_i * BC + j) * K + i_k * BK,), (BK,), (0,))
|
531 |
+
# [BC,]
|
532 |
+
b_dA = tl.load(dA + o_dA + j * BT, mask=(i_t * BT + i_i * BC + j < T), other=0)
|
533 |
+
# [BK,]
|
534 |
+
b_qj = tl.load(p_qj, boundary_check=(0,)).to(tl.float32)
|
535 |
+
b_zj = tl.load(p_zj, boundary_check=(0,)).to(tl.float32)
|
536 |
+
# [BC, BK]
|
537 |
+
m_i = o_i[:, None] <= j
|
538 |
+
b_dk += tl.where(m_i, b_dA[:, None] * b_qj[None, :] * exp(b_k - b_zj[None, :]), 0.)
|
539 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
|
540 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
541 |
+
|
542 |
+
|
543 |
+
@triton.jit(do_not_specialize=['T'])
|
544 |
+
def chunk_abc_bwd_kernel_intra_K(
|
545 |
+
v,
|
546 |
+
z,
|
547 |
+
do,
|
548 |
+
dA,
|
549 |
+
scale,
|
550 |
+
T,
|
551 |
+
V: tl.constexpr,
|
552 |
+
BT: tl.constexpr,
|
553 |
+
BC: tl.constexpr,
|
554 |
+
BV: tl.constexpr,
|
555 |
+
NC: tl.constexpr
|
556 |
+
):
|
557 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
558 |
+
i_t, i_i, i_j = i_c // (NC * NC), (i_c % (NC * NC)) // NC, (i_c % (NC * NC)) % NC
|
559 |
+
n_bh = tl.num_programs(2)
|
560 |
+
|
561 |
+
if i_i > i_j:
|
562 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1))
|
563 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
564 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), ((i_t * BT + i_i * BC) * V + i_v * BV,), (BV,), (0,))
|
565 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
566 |
+
p_dA = tl.make_block_ptr(dA+(i_bh+i_v*n_bh)*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
567 |
+
# [BV,]
|
568 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
569 |
+
# [BC, BV]
|
570 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
571 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
572 |
+
b_do = (b_do * exp(b_zn[None, :] - b_z) * scale).to(b_do.dtype)
|
573 |
+
# [BV, BC]
|
574 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
575 |
+
b_v = exp(b_v - b_zn[:, None]).to(b_v.dtype)
|
576 |
+
# [BC, BC]
|
577 |
+
b_dA = tl.dot(b_do, b_v, allow_tf32=False)
|
578 |
+
tl.store(p_dA, b_dA.to(dA.dtype.element_ty), boundary_check=(0, 1))
|
579 |
+
elif i_i == i_j:
|
580 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T * V,), (1,), ((i_t * BT + i_j * BC) * V + i_v * BV,), (BV,), (0,))
|
581 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
582 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
583 |
+
# [BC, BV]
|
584 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
585 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)) * scale
|
586 |
+
|
587 |
+
o_i = tl.arange(0, BC)
|
588 |
+
o_A = (i_bh + i_v * n_bh) * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_j * BC
|
589 |
+
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
590 |
+
for j in range(0, BC):
|
591 |
+
# [BV,]
|
592 |
+
b_v = tl.load(p_v, boundary_check=(0,)).to(tl.float32)
|
593 |
+
# [BC,]
|
594 |
+
b_dA = tl.sum(b_do * exp(b_v[None, :] - b_z), 1)
|
595 |
+
b_dA = tl.where(o_i >= j, b_dA, 0)
|
596 |
+
tl.store(dA + o_A + j, b_dA.to(b_do.dtype), mask=m_A)
|
597 |
+
|
598 |
+
p_v = tl.advance(p_v, (V,))
|
599 |
+
|
600 |
+
|
601 |
+
@triton.jit(do_not_specialize=['T'])
|
602 |
+
def chunk_abc_bwd_kernel_K(
|
603 |
+
q,
|
604 |
+
k,
|
605 |
+
v,
|
606 |
+
z,
|
607 |
+
h,
|
608 |
+
A,
|
609 |
+
do,
|
610 |
+
dh,
|
611 |
+
dq,
|
612 |
+
dk,
|
613 |
+
dv,
|
614 |
+
dA,
|
615 |
+
scale,
|
616 |
+
T,
|
617 |
+
K: tl.constexpr,
|
618 |
+
V: tl.constexpr,
|
619 |
+
BT: tl.constexpr,
|
620 |
+
BK: tl.constexpr,
|
621 |
+
BV: tl.constexpr,
|
622 |
+
NT: tl.constexpr
|
623 |
+
):
|
624 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
625 |
+
i_p = tl.maximum(i_t * BT - 1, 0)
|
626 |
+
n_bh = tl.num_programs(2)
|
627 |
+
|
628 |
+
o_i = tl.arange(0, BT)
|
629 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
630 |
+
|
631 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
632 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
633 |
+
p_A = tl.make_block_ptr(A + (i_k*n_bh+i_bh) * T * BT, (T, BT, ), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
634 |
+
|
635 |
+
# [BT, BK]
|
636 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
637 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
638 |
+
# [BT, BT]
|
639 |
+
b_A = tl.dot((b_q * scale).to(b_q.dtype), tl.trans(b_k), allow_tf32=False)
|
640 |
+
b_A = tl.where(m_s, b_A, 0.)
|
641 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
642 |
+
|
643 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
644 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
645 |
+
for i_v in range(tl.cdiv(V, BV)):
|
646 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
647 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
648 |
+
p_zp = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), (i_p * V + i_v * BV,), (BV,), (0,))
|
649 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), ((i_t * BT + BT - 1) * V + i_v * BV,), (BV,), (0,))
|
650 |
+
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
651 |
+
|
652 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
653 |
+
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
654 |
+
p_dv = tl.make_block_ptr(dv + (i_k*n_bh+i_bh) * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
655 |
+
|
656 |
+
# [BV,]
|
657 |
+
b_zp = tl.load(p_zp, boundary_check=(0,))
|
658 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
659 |
+
# [BT, BV]
|
660 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
661 |
+
b_v = exp(b_v - b_zc[None, :]).to(b_v.dtype)
|
662 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
663 |
+
b_z = exp(b_zp[None, :] - b_z)
|
664 |
+
# [BV, BK]
|
665 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
666 |
+
# [BT, BV]
|
667 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
668 |
+
b_do = (b_do * b_z * scale).to(b_do.dtype)
|
669 |
+
# [BK, BV]
|
670 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
671 |
+
|
672 |
+
# [BT, BK]
|
673 |
+
b_dq += tl.dot(b_do, b_h, allow_tf32=False)
|
674 |
+
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False)
|
675 |
+
# [BT, BV]
|
676 |
+
b_dv = b_v * tl.dot(b_k, b_dh, allow_tf32=False)
|
677 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
678 |
+
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT, ), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
679 |
+
# [BT, BT]
|
680 |
+
b_dA = tl.load(p_dA, boundary_check=(0, 1))
|
681 |
+
# [BT, BK]
|
682 |
+
b_dq += tl.dot(b_dA, b_k, allow_tf32=False)
|
683 |
+
b_dk += tl.dot(tl.trans(b_dA).to(b_k.dtype), b_q, allow_tf32=False)
|
684 |
+
|
685 |
+
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
686 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
687 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
688 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
689 |
+
|
690 |
+
|
691 |
+
@triton.jit(do_not_specialize=['T'])
|
692 |
+
def chunk_abc_bwd_kernel_intra_KV(
|
693 |
+
v,
|
694 |
+
z,
|
695 |
+
A,
|
696 |
+
do,
|
697 |
+
dv,
|
698 |
+
T,
|
699 |
+
V: tl.constexpr,
|
700 |
+
BT: tl.constexpr,
|
701 |
+
BC: tl.constexpr,
|
702 |
+
BV: tl.constexpr,
|
703 |
+
NC: tl.constexpr
|
704 |
+
):
|
705 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
706 |
+
i_t, i_i = i_c // NC, i_c % NC
|
707 |
+
|
708 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
709 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*V, (T*V,), (1,), ((i_t * BT + i_i * BC + BC - 1) * V + i_v * BV,), (BV,), (0,))
|
710 |
+
# [BV,]
|
711 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
712 |
+
# [BC, BV]
|
713 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
714 |
+
b_dv = tl.zeros([BC, BV], dtype=tl.float32)
|
715 |
+
for i_j in range(i_i + 1, NC):
|
716 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
717 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
|
718 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
719 |
+
# [BC, BV]
|
720 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
721 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
722 |
+
b_do = (b_do * exp(b_zn[None, :] - b_z)).to(b_do.dtype)
|
723 |
+
# [BC, BC]
|
724 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
725 |
+
b_dv += tl.dot(b_A, b_do, allow_tf32=False)
|
726 |
+
b_dv *= exp(b_v - b_zn[None, :])
|
727 |
+
|
728 |
+
o_i = tl.arange(0, BC)
|
729 |
+
for j in range(0, BC):
|
730 |
+
p_z = tl.make_block_ptr(z + i_bh * T*V, (T * V,), (1,), ((i_t * BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,))
|
731 |
+
p_A = tl.make_block_ptr(A + i_bh * T * BT, (T * BT,), (1,), ((i_t * BT + i_i * BC + j) * BT + i_i * BC,), (BC,), (0,))
|
732 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T * V,), (1,), ((i_t * BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,))
|
733 |
+
# [BC,]
|
734 |
+
b_A = tl.load(p_A, boundary_check=(0,))
|
735 |
+
# [BV,]
|
736 |
+
b_z = tl.load(p_z, boundary_check=(0,))
|
737 |
+
b_do = tl.load(p_do, boundary_check=(0,))
|
738 |
+
# [BC, BV]
|
739 |
+
m_i = o_i[:, None] <= j
|
740 |
+
b_dv += tl.where(m_i, exp(b_v - b_z[None, :]) * b_A[:, None] * b_do[None, :], 0.)
|
741 |
+
p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
742 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
743 |
+
|
744 |
+
|
745 |
+
@triton.jit(do_not_specialize=['T'])
|
746 |
+
def chunk_abc_bwd_kernel_rcum_inter(
|
747 |
+
s,
|
748 |
+
z,
|
749 |
+
ss,
|
750 |
+
doo,
|
751 |
+
T,
|
752 |
+
S: tl.constexpr,
|
753 |
+
BT: tl.constexpr,
|
754 |
+
BS: tl.constexpr,
|
755 |
+
NT: tl.constexpr
|
756 |
+
):
|
757 |
+
i_m, i_bh = tl.program_id(0), tl.program_id(1)
|
758 |
+
|
759 |
+
b_sp = tl.zeros([BS,], dtype=tl.float32)
|
760 |
+
b_zp = tl.full([BS,], float('inf'), dtype=tl.float32)
|
761 |
+
for i_t in range(NT - 1, -1, -1):
|
762 |
+
p_s = tl.make_block_ptr(s + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_m * BS), (BT, BS), (1, 0))
|
763 |
+
p_z = tl.make_block_ptr(z + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_m * BS), (BT, BS), (1, 0))
|
764 |
+
p_zc = tl.make_block_ptr(z + i_bh * T*S, (T*S,), (1,), ((i_t * BT) * S + i_m * BS,), (BS,), (0,))
|
765 |
+
p_ss = tl.make_block_ptr(ss + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_m * BS), (BT, BS), (1, 0))
|
766 |
+
p_doo = tl.make_block_ptr(doo + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_m * BS), (BT, BS), (1, 0))
|
767 |
+
# [BS,]
|
768 |
+
b_zc = tl.load(p_zc, boundary_check=(0,))
|
769 |
+
# [BT, BS]
|
770 |
+
b_s = tl.load(p_s, boundary_check=(0, 1))
|
771 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
772 |
+
b_ss = tl.load(p_ss, boundary_check=(0, 1))
|
773 |
+
|
774 |
+
b_doo = exp(b_s - b_zp[None, :]) * b_sp[None, :]
|
775 |
+
tl.store(p_doo, b_doo.to(p_doo.dtype.element_ty), boundary_check=(0, 1))
|
776 |
+
# [BS,]
|
777 |
+
b_sp = b_sp * exp(b_zc - b_zp) + tl.sum(b_ss * exp(b_zc[None, :] - b_z), 0)
|
778 |
+
b_zp = b_zc
|
779 |
+
|
780 |
+
|
781 |
+
@triton.jit(do_not_specialize=['T'])
|
782 |
+
def chunk_abc_bwd_kernel_rcum_intra(
|
783 |
+
s,
|
784 |
+
z,
|
785 |
+
ss,
|
786 |
+
doo,
|
787 |
+
T,
|
788 |
+
S: tl.constexpr,
|
789 |
+
BT: tl.constexpr,
|
790 |
+
BC: tl.constexpr,
|
791 |
+
BS: tl.constexpr,
|
792 |
+
NC: tl.constexpr
|
793 |
+
):
|
794 |
+
i_s, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
795 |
+
i_t, i_i = i_c // NC, i_c % NC
|
796 |
+
|
797 |
+
o_i = tl.arange(0, BC)
|
798 |
+
m_o = tl.full([BC, BC], 1., dtype=tl.float32)
|
799 |
+
|
800 |
+
p_s = tl.make_block_ptr(s + i_bh * T*S, (T, S), (S, 1), (i_t * BT + i_i * BC, i_s * BS), (BC, BS), (1, 0))
|
801 |
+
p_zn = tl.make_block_ptr(z + i_bh * T*S, (T*S,), (1,), ((i_t * BT + i_i * BC + BC - 1) * S + i_s * BS,), (BS,), (0,))
|
802 |
+
p_doo = tl.make_block_ptr(doo + i_bh * T*S, (T, S), (S, 1), (i_t * BT + i_i * BC, i_s * BS), (BC, BS), (1, 0))
|
803 |
+
# [BC, BS]
|
804 |
+
b_s = tl.load(p_s, boundary_check=(0, 1))
|
805 |
+
# [BS,]
|
806 |
+
b_zn = tl.load(p_zn, boundary_check=(0,))
|
807 |
+
|
808 |
+
b_doo = tl.zeros([BC, BS], dtype=tl.float32)
|
809 |
+
for i_j in range(i_i + 1, NC):
|
810 |
+
p_z = tl.make_block_ptr(z + i_bh * T*S, (T, S), (S, 1), (i_t * BT + i_j * BC, i_s * BS), (BC, BS), (1, 0))
|
811 |
+
p_ss = tl.make_block_ptr(ss + i_bh * T*S, (T, S), (S, 1), (i_t * BT + i_j * BC, i_s * BS), (BC, BS), (1, 0))
|
812 |
+
# [BC, BS]
|
813 |
+
b_z = tl.load(p_z, boundary_check=(0, 1))
|
814 |
+
b_ss = tl.load(p_ss, boundary_check=(0, 1))
|
815 |
+
# [BC, BS]
|
816 |
+
b_doo += b_ss * exp(b_zn[None, :] - b_z)
|
817 |
+
b_doo = exp(b_s - b_zn[None, :]) * tl.dot(m_o.to(b_s.dtype), b_doo.to(b_s.dtype), allow_tf32=False)
|
818 |
+
|
819 |
+
for j in range(0, BC):
|
820 |
+
p_z = tl.make_block_ptr(z + i_bh * T*S, (T*S,), (1,), ((i_t * BT + i_i * BC + j) * S + i_s * BS,), (BS,), (0,))
|
821 |
+
p_ss = tl.make_block_ptr(ss + i_bh * T*S, (T*S,), (1,), ((i_t * BT + i_i * BC + j) * S + i_s * BS,), (BS,), (0,))
|
822 |
+
# [BS,]
|
823 |
+
b_z = tl.load(p_z, boundary_check=(0,))
|
824 |
+
b_ss = tl.load(p_ss, boundary_check=(0,))
|
825 |
+
# [BC, BS]
|
826 |
+
m_i = o_i[:, None] <= j
|
827 |
+
b_doo += tl.where(m_i, exp(b_s - b_z[None, :]) * b_ss[None, :], 0.)
|
828 |
+
b_doo += tl.load(p_doo, boundary_check=(0, 1))
|
829 |
+
tl.store(p_doo, b_doo.to(p_doo.dtype.element_ty), boundary_check=(0, 1))
|
830 |
+
|
831 |
+
|
832 |
+
class ChunkABCFunction(torch.autograd.Function):
|
833 |
+
|
834 |
+
@staticmethod
|
835 |
+
@input_guard
|
836 |
+
def forward(ctx, q, k, v, s, initial_state, output_final_state):
|
837 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
838 |
+
BT, BC = 64, 16
|
839 |
+
BK = min(64, triton.next_power_of_2(K))
|
840 |
+
BV = min(64, triton.next_power_of_2(V))
|
841 |
+
BM = min(64, triton.next_power_of_2(M))
|
842 |
+
NT, NC = triton.cdiv(T, BT), triton.cdiv(BT, BC)
|
843 |
+
NV, NM = triton.cdiv(V, BV), triton.cdiv(M, BM)
|
844 |
+
num_warps = 4 if BK == 64 else 2
|
845 |
+
num_stages = 1
|
846 |
+
|
847 |
+
def fwd_pre(s, B, H, T, S):
|
848 |
+
# keep cummulative normalizer in fp32
|
849 |
+
z = torch.empty_like(s, dtype=torch.float)
|
850 |
+
grid = (B * H,)
|
851 |
+
logcumsumexp_fwd_kernel[grid](
|
852 |
+
s, z,
|
853 |
+
T=T, S=S
|
854 |
+
)
|
855 |
+
return z
|
856 |
+
|
857 |
+
def fwd_inner(q, k, v, z, B, H, T, K, V, BT, BK, BV, NT, normk=False, h0=None, ht=None):
|
858 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
859 |
+
h = q.new_empty(B, H, NT * K, V)
|
860 |
+
grid = (NV, NK, B * H)
|
861 |
+
chunk_abc_fwd_kernel_h[grid](
|
862 |
+
k, v, z, h, h0, ht,
|
863 |
+
T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT,
|
864 |
+
NORMK=normk,
|
865 |
+
USE_INITIAL_STATE=h0 is not None,
|
866 |
+
STORE_FINAL_STATE=ht is not None,
|
867 |
+
num_warps=num_warps,
|
868 |
+
num_stages=num_stages
|
869 |
+
)
|
870 |
+
return h
|
871 |
+
|
872 |
+
final_state = None
|
873 |
+
if output_final_state:
|
874 |
+
final_state = (q.new_empty(B, H, K, M, dtype=torch.float),
|
875 |
+
q.new_empty(B, H, M, V, dtype=torch.float))
|
876 |
+
|
877 |
+
z = fwd_pre(s, B, H, T, M)
|
878 |
+
scale = K ** -0.5
|
879 |
+
hk = fwd_inner(
|
880 |
+
q=q, k=k, v=s, z=z,
|
881 |
+
B=B, H=H, T=T, K=K, V=M, BT=BT, BK=BK, BV=BM, NT=NT,
|
882 |
+
normk=False,
|
883 |
+
h0=initial_state[0] if initial_state is not None else None,
|
884 |
+
ht=final_state[0] if final_state is not None else None
|
885 |
+
)
|
886 |
+
ok1 = torch.empty_like(s)
|
887 |
+
Ak = q.new_empty(B, H, T, BT)
|
888 |
+
grid = (NM, NT, B * H)
|
889 |
+
chunk_abc_fwd_kernel_K[grid](
|
890 |
+
q, k, z, hk, ok1, Ak,
|
891 |
+
scale=scale,
|
892 |
+
T=T, K=K, V=M, BT=BT, BK=BK, BV=BM, NT=NT,
|
893 |
+
num_warps=num_warps,
|
894 |
+
num_stages=num_stages
|
895 |
+
)
|
896 |
+
ok0 = torch.empty_like(s)
|
897 |
+
grid = (NM, NT * NC, B * H)
|
898 |
+
chunk_abc_fwd_kernel_intra_K[grid](
|
899 |
+
s, z, ok0, Ak,
|
900 |
+
T=T, V=M, BT=BT, BC=BC, BV=BM, NC=NC,
|
901 |
+
num_warps=2,
|
902 |
+
num_stages=num_stages
|
903 |
+
)
|
904 |
+
ok = ok0.add_(ok1)
|
905 |
+
|
906 |
+
scale = 1.
|
907 |
+
# p is kept in fp32 for safe softmax backward
|
908 |
+
p = softmax_fwd(ok, dtype=torch.float)
|
909 |
+
qv = p.to(q.dtype)
|
910 |
+
|
911 |
+
scale = 1.
|
912 |
+
hv = fwd_inner(
|
913 |
+
q=qv, k=s, v=v, z=z,
|
914 |
+
B=B, H=H, T=T, K=M, V=V, BT=BT, BK=BM, BV=BV, NT=NT,
|
915 |
+
normk=True,
|
916 |
+
h0=initial_state[1] if initial_state is not None else None,
|
917 |
+
ht=final_state[1] if final_state is not None else None
|
918 |
+
)
|
919 |
+
Av = q.new_zeros(NM, B, H, T, BT)
|
920 |
+
grid = (NM, NT * NC * NC, B * H)
|
921 |
+
chunk_abc_fwd_kernel_intra_V[grid](
|
922 |
+
qv, s, z, Av,
|
923 |
+
scale=scale,
|
924 |
+
T=T, K=M, BT=BT, BC=BC, BK=BM, NC=NC,
|
925 |
+
num_warps=2,
|
926 |
+
num_stages=num_stages
|
927 |
+
)
|
928 |
+
Av = Av.sum(0)
|
929 |
+
ov = torch.empty_like(v)
|
930 |
+
grid = (NV, NT, B * H)
|
931 |
+
chunk_abc_fwd_kernel_V[grid](
|
932 |
+
qv, v, z, hv, ov, Av,
|
933 |
+
scale=scale,
|
934 |
+
T=T,
|
935 |
+
K=M,
|
936 |
+
V=V,
|
937 |
+
BT=BT,
|
938 |
+
BK=BM,
|
939 |
+
BV=BV,
|
940 |
+
NT=NT,
|
941 |
+
num_warps=num_warps,
|
942 |
+
num_stages=num_stages
|
943 |
+
)
|
944 |
+
ctx.save_for_backward(q, k, v, s, z, ok, p, hk, hv, Av)
|
945 |
+
ctx.BT = BT
|
946 |
+
return ov, final_state
|
947 |
+
|
948 |
+
@staticmethod
|
949 |
+
@input_guard
|
950 |
+
def backward(ctx, dov, dht=None):
|
951 |
+
q, k, v, s, z, ok, p, hk, hv, Av = ctx.saved_tensors
|
952 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
953 |
+
BT, BC = ctx.BT, 16
|
954 |
+
BK = min(64, triton.next_power_of_2(K))
|
955 |
+
BV = min(64, triton.next_power_of_2(V))
|
956 |
+
BM = min(64, triton.next_power_of_2(M))
|
957 |
+
NT, NC = triton.cdiv(T, BT), triton.cdiv(BT, BC)
|
958 |
+
NK, NM = triton.cdiv(K, BK), triton.cdiv(M, BM)
|
959 |
+
num_warps = 4 if BK == 64 else 2
|
960 |
+
num_stages = 1
|
961 |
+
|
962 |
+
def bwd_inner(q, z, do, B, H, T, K, V, BT, BK, BV, NT, scale, normk=False):
|
963 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
964 |
+
dh = q.new_empty(B, H, NT * K, V)
|
965 |
+
grid = (NK, NV, B * H)
|
966 |
+
chunk_abc_bwd_kernel_dh[grid](
|
967 |
+
q, z, do, dh,
|
968 |
+
scale=scale,
|
969 |
+
T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT,
|
970 |
+
NORMK=normk,
|
971 |
+
num_warps=num_warps,
|
972 |
+
num_stages=num_stages
|
973 |
+
)
|
974 |
+
return dh
|
975 |
+
|
976 |
+
def bwd_post(s, z, ss, B, H, T, S, BT, BC, BS, NT, NC, NS):
|
977 |
+
doo = torch.empty_like(s)
|
978 |
+
grid = (NS, B * H)
|
979 |
+
chunk_abc_bwd_kernel_rcum_inter[grid](
|
980 |
+
s, z, ss, doo,
|
981 |
+
T=T, S=S, BT=BT, BS=BS, NT=NT,
|
982 |
+
num_warps=num_warps,
|
983 |
+
num_stages=num_stages
|
984 |
+
)
|
985 |
+
grid = (NS, NT * NC, B * H)
|
986 |
+
chunk_abc_bwd_kernel_rcum_intra[grid](
|
987 |
+
s, z, ss, doo,
|
988 |
+
T=T, S=S, BT=BT, BC=BC, BS=BS, NC=NC,
|
989 |
+
num_warps=num_warps,
|
990 |
+
num_stages=num_stages
|
991 |
+
)
|
992 |
+
return doo
|
993 |
+
|
994 |
+
scale = 1.
|
995 |
+
qv = p.to(q.dtype)
|
996 |
+
dhv = bwd_inner(
|
997 |
+
qv, z, dov,
|
998 |
+
B=B, H=H, T=T, K=M, V=V, BT=BT, BK=BM, BV=BV, NT=NT,
|
999 |
+
scale=scale,
|
1000 |
+
normk=True
|
1001 |
+
)
|
1002 |
+
dp1 = torch.empty_like(p)
|
1003 |
+
dsv1 = torch.empty_like(s, dtype=torch.float)
|
1004 |
+
dv = v.new_empty(NM, *v.shape)
|
1005 |
+
dAv = q.new_zeros(B, H, T, BT)
|
1006 |
+
grid = (NM, NT, B * H)
|
1007 |
+
chunk_abc_bwd_kernel_V[grid](
|
1008 |
+
s, v, z, hv, Av, dov, dhv, dp1, dsv1, dv, dAv,
|
1009 |
+
scale=scale,
|
1010 |
+
T=T, K=M, V=V, BT=BT, BK=BM, BV=BV, NT=NT,
|
1011 |
+
num_warps=num_warps,
|
1012 |
+
num_stages=num_stages
|
1013 |
+
)
|
1014 |
+
dv = dv.sum(0)
|
1015 |
+
dp0 = torch.empty_like(p)
|
1016 |
+
dsv0 = s.new_zeros(s.shape, dtype=torch.float)
|
1017 |
+
grid = (NM, NT * NC, B * H)
|
1018 |
+
chunk_abc_bwd_kernel_intra_V[grid](
|
1019 |
+
qv, s, z, dAv, dp0, dsv0,
|
1020 |
+
T=T, K=M, BT=BT, BC=BC, BK=BM, NC=NC,
|
1021 |
+
num_warps=2,
|
1022 |
+
num_stages=num_stages
|
1023 |
+
)
|
1024 |
+
dp = dp1.add_(dp0)
|
1025 |
+
dsv = dsv1.add_(dsv0)
|
1026 |
+
|
1027 |
+
# softmax gradient, equivalent to:
|
1028 |
+
# dok = p * (dp - (p * dp).sum(-1, True))
|
1029 |
+
dok = softmax_bwd(p, dp, dtype=ok.dtype)
|
1030 |
+
|
1031 |
+
scale = K ** -0.5
|
1032 |
+
dhk = bwd_inner(
|
1033 |
+
q, z, dok,
|
1034 |
+
B=B, H=H, T=T, K=K, V=M, BT=BT, BK=BK, BV=BM, NT=NT,
|
1035 |
+
scale=scale,
|
1036 |
+
normk=False
|
1037 |
+
)
|
1038 |
+
dAk = q.new_zeros(NM, B, H, T, BT)
|
1039 |
+
grid = (NM, NT * NC * NC, B * H)
|
1040 |
+
chunk_abc_bwd_kernel_intra_K[grid](
|
1041 |
+
s, z, dok, dAk,
|
1042 |
+
scale=scale,
|
1043 |
+
T=T, V=M, BT=BT, BC=BC, BV=BM, NC=NC,
|
1044 |
+
num_warps=2,
|
1045 |
+
num_stages=num_stages
|
1046 |
+
)
|
1047 |
+
dAk = dAk.sum(0)
|
1048 |
+
|
1049 |
+
Ak = q.new_zeros(NK, B, H, T, BT)
|
1050 |
+
dq = torch.empty_like(q)
|
1051 |
+
dk = torch.empty_like(k)
|
1052 |
+
dsk1 = s.new_empty(NK, *s.shape, dtype=torch.float)
|
1053 |
+
grid = (NK, NT, B * H)
|
1054 |
+
chunk_abc_bwd_kernel_K[grid](
|
1055 |
+
q, k, s, z, hk, Ak, dok, dhk, dq, dk, dsk1, dAk,
|
1056 |
+
scale=scale,
|
1057 |
+
T=T, K=K, V=M, BT=BT, BK=BK, BV=BM, NT=NT,
|
1058 |
+
num_warps=num_warps,
|
1059 |
+
num_stages=num_stages
|
1060 |
+
)
|
1061 |
+
Ak = Ak.sum(0)
|
1062 |
+
dsk1 = dsk1.sum(0)
|
1063 |
+
dsk0 = torch.empty_like(s, dtype=torch.float)
|
1064 |
+
grid = (NM, NT * NC, B * H)
|
1065 |
+
chunk_abc_bwd_kernel_intra_KV[grid](
|
1066 |
+
s, z, Ak, dok, dsk0,
|
1067 |
+
T=T, V=M, BT=BT, BC=BC, BV=BM, NC=NC,
|
1068 |
+
num_warps=2,
|
1069 |
+
num_stages=num_stages
|
1070 |
+
)
|
1071 |
+
ds = dsv.add_(dsk1.add_(dsk0))
|
1072 |
+
ds -= bwd_post(s, z, ok * dok + p * dp, B, H, T, M, BT, BC, BM, NT, NC, NM)
|
1073 |
+
ds = ds.to(s.dtype)
|
1074 |
+
return dq, dk, dv, ds, None, None
|
1075 |
+
|
1076 |
+
|
1077 |
+
@torch.compiler.disable
|
1078 |
+
def chunk_abc(
|
1079 |
+
q: torch.Tensor,
|
1080 |
+
k: torch.Tensor,
|
1081 |
+
v: torch.Tensor,
|
1082 |
+
s: torch.Tensor,
|
1083 |
+
initial_state: Optional[Tuple[torch.Tensor]] = None,
|
1084 |
+
output_final_state: bool = False,
|
1085 |
+
head_first: bool = True
|
1086 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1087 |
+
r"""
|
1088 |
+
Args:
|
1089 |
+
q (torch.Tensor):
|
1090 |
+
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
|
1091 |
+
k (torch.Tensor):
|
1092 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
|
1093 |
+
v (torch.Tensor):
|
1094 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`
|
1095 |
+
s (torch.Tensor):
|
1096 |
+
slot representations of shape `[B, H, T, M]` if `head_first=True` else `[B, T, H, M]`
|
1097 |
+
initial_state (Optional[Tuple[torch.Tensor, torch.Tensor]]):
|
1098 |
+
Initial states of shape `[B, H, K, M]` and `[B, H, M, V]`. Default: `None`.
|
1099 |
+
output_final_state (Optional[bool]):
|
1100 |
+
Whether to output the final state of shape `[B, H, K, M]` and `[B, H, M, V]`. Default: `False`.
|
1101 |
+
head_first (Optional[bool]):
|
1102 |
+
Whether the inputs are in the head-first format.
|
1103 |
+
Default: `True`.
|
1104 |
+
|
1105 |
+
Returns:
|
1106 |
+
o (torch.Tensor):
|
1107 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
1108 |
+
final_state (torch.Tensor):
|
1109 |
+
Final state of shape `[B, H, K, M]` and `[B, H, M, V]` if `output_final_state=True` else `None`.
|
1110 |
+
"""
|
1111 |
+
if not head_first:
|
1112 |
+
q, k, v, s = map(lambda x: x.transpose(1, 2), (q, k, v, s))
|
1113 |
+
o, final_state = ChunkABCFunction.apply(q, k, v, s, initial_state, output_final_state)
|
1114 |
+
if not head_first:
|
1115 |
+
o = o.transpose(1, 2)
|
1116 |
+
return o, final_state
|
fla/ops/abc/naive.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from einops import repeat
|
7 |
+
|
8 |
+
|
9 |
+
def naive_recurrent_abc(
|
10 |
+
q: torch.Tensor,
|
11 |
+
k: torch.Tensor,
|
12 |
+
v: torch.Tensor,
|
13 |
+
s: torch.Tensor,
|
14 |
+
g: Optional[torch.Tensor] = None,
|
15 |
+
scale: Optional[int] = None,
|
16 |
+
initial_state: Optional[torch.Tensor] = None,
|
17 |
+
output_final_state: Optional[bool] = False
|
18 |
+
) -> torch.Tensor:
|
19 |
+
dtype = q.dtype
|
20 |
+
|
21 |
+
NG = q.shape[1]//k.shape[1]
|
22 |
+
# [batch_size, n_heads, seq_len, n_slots]
|
23 |
+
if g is None:
|
24 |
+
z = s.float().logcumsumexp(2)
|
25 |
+
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
26 |
+
s = torch.exp(s - z)
|
27 |
+
q, k, v, s, g = map(lambda x: x.float(), (q, k, v, s, g))
|
28 |
+
k, v, s, g = map(lambda x: repeat(x, 'b h t d -> b (h g) t d', g=NG), (k, v, s, g))
|
29 |
+
if initial_state is not None:
|
30 |
+
initial_state = tuple(map(lambda x: repeat(x, 'b h k v -> b (h g) k v', g=NG), initial_state))
|
31 |
+
|
32 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
33 |
+
|
34 |
+
hk = torch.zeros(B, H, K, M, dtype=torch.float, device=q.device)
|
35 |
+
ok = torch.zeros_like(s)
|
36 |
+
|
37 |
+
if scale is None:
|
38 |
+
scale = q.shape[-1] ** -0.5
|
39 |
+
|
40 |
+
final_state = None
|
41 |
+
if initial_state is not None:
|
42 |
+
hk += initial_state[0]
|
43 |
+
|
44 |
+
for i in range(T):
|
45 |
+
q_i = q[:, :, i] * scale
|
46 |
+
k_i = k[:, :, i]
|
47 |
+
v_i = s[:, :, i]
|
48 |
+
g_i = g[:, :, i].exp()
|
49 |
+
hk = hk * g_i[..., None, :] + k_i[..., None] * v_i[..., None, :]
|
50 |
+
ok[:, :, i] = (q_i[..., None] * hk).sum(-2)
|
51 |
+
|
52 |
+
qv = ok.softmax(-1)
|
53 |
+
hv = torch.zeros(B, H, M, V, dtype=torch.float, device=q.device)
|
54 |
+
ov = torch.zeros_like(v)
|
55 |
+
if initial_state is not None:
|
56 |
+
hv += initial_state[1]
|
57 |
+
|
58 |
+
for i in range(T):
|
59 |
+
q_i = qv[:, :, i]
|
60 |
+
k_i = s[:, :, i]
|
61 |
+
v_i = v[:, :, i]
|
62 |
+
g_i = g[:, :, i].exp()
|
63 |
+
hv = hv * g_i[..., :, None] + k_i[..., None] * v_i[..., None, :]
|
64 |
+
ov[:, :, i] = (q_i[..., None] * hv).sum(-2)
|
65 |
+
|
66 |
+
if output_final_state:
|
67 |
+
final_state = (hk.view(B, -1, NG, K, M)[:, :, 0], hv.view(B, -1, NG, M, V)[:, :, 0])
|
68 |
+
return ov.to(dtype), final_state
|
69 |
+
|
70 |
+
|
71 |
+
def naive_cumsum_abc(
|
72 |
+
q: torch.Tensor,
|
73 |
+
k: torch.Tensor,
|
74 |
+
v: torch.Tensor,
|
75 |
+
s: torch.Tensor
|
76 |
+
) -> torch.Tensor:
|
77 |
+
"""
|
78 |
+
A simple implementation of vanilla ABC that is more aligned with the descriptions in the paper.
|
79 |
+
This is just for demonstration purposes, with no numerical stabilities guaranteed.
|
80 |
+
"""
|
81 |
+
|
82 |
+
dtype = q.dtype
|
83 |
+
q, k, v, s = map(lambda x: x.float(), (q, k, v, s))
|
84 |
+
|
85 |
+
scale = q.shape[-1] ** -0.5
|
86 |
+
# [batch_size, n_heads, seq_len, n_slots]
|
87 |
+
s = (s - s.max(2, True)[0]).exp()
|
88 |
+
z = s.cumsum(2)
|
89 |
+
# [batch_size, n_heads, seq_len, n_slots, d_head]
|
90 |
+
K = (s.unsqueeze(-1) * k.unsqueeze(-2)).cumsum(2) / z.unsqueeze(-1)
|
91 |
+
V = (s.unsqueeze(-1) * v.unsqueeze(-2)).cumsum(2) / z.unsqueeze(-1)
|
92 |
+
# [batch_size, n_heads, seq_len, n_slots]
|
93 |
+
p = torch.einsum('...d,...md->...m', q * scale, K).softmax(-1)
|
94 |
+
# [batch_size, n_heads, seq_len, d_head]
|
95 |
+
o = torch.einsum('...m,...md->...d', p, V)
|
96 |
+
return o.to(dtype), None
|
fla/ops/based/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .fused_chunk import fused_chunk_based
|
4 |
+
from .parallel import parallel_based
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'fused_chunk_based',
|
8 |
+
'parallel_based'
|
9 |
+
]
|
fla/ops/based/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (325 Bytes). View file
|
|
fla/ops/based/__pycache__/fused_chunk.cpython-311.pyc
ADDED
Binary file (22.9 kB). View file
|
|
fla/ops/based/__pycache__/parallel.cpython-311.pyc
ADDED
Binary file (22.7 kB). View file
|
|
fla/ops/based/fused_chunk.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
11 |
+
|
12 |
+
|
13 |
+
@triton.jit(do_not_specialize=['T'])
|
14 |
+
def fused_chunk_based_fwd_kernel(
|
15 |
+
q,
|
16 |
+
k,
|
17 |
+
v,
|
18 |
+
o,
|
19 |
+
z,
|
20 |
+
scale, # K ** -0.5
|
21 |
+
T,
|
22 |
+
B: tl.constexpr,
|
23 |
+
H: tl.constexpr,
|
24 |
+
K: tl.constexpr,
|
25 |
+
V: tl.constexpr,
|
26 |
+
BT: tl.constexpr,
|
27 |
+
BK: tl.constexpr,
|
28 |
+
BV: tl.constexpr,
|
29 |
+
):
|
30 |
+
# indices
|
31 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
32 |
+
|
33 |
+
o_i = tl.arange(0, BT)
|
34 |
+
|
35 |
+
# [BT, BT]
|
36 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
37 |
+
|
38 |
+
# [BV], zero-order taylor expansion
|
39 |
+
b_h_0o = tl.zeros([BV], dtype=tl.float32)
|
40 |
+
# [BK, BV], first-order taylor expansion
|
41 |
+
b_h_1o = tl.zeros([BK, BV], dtype=tl.float32)
|
42 |
+
# [BK, BK, BV] second-order taylor expansion
|
43 |
+
b_h_2o = tl.zeros([BK*BK, BV], dtype=tl.float32)
|
44 |
+
|
45 |
+
# make block pointers
|
46 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0))
|
47 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1))
|
48 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
49 |
+
p_o = tl.make_block_ptr(o + (i_bh + i_k*B*H) * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
50 |
+
|
51 |
+
p_z = z + (i_bh + i_k * B * H) * T + tl.arange(0, BT)
|
52 |
+
k_2o = tl.zeros([1, BK * BK], dtype=tl.float32)
|
53 |
+
k_1o = tl.zeros([1, BK], dtype=tl.float32)
|
54 |
+
k_0o = 0
|
55 |
+
|
56 |
+
for i in range(0, tl.cdiv(T, BT)):
|
57 |
+
# [BK, BT]
|
58 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
59 |
+
# [BK*BK, BT]
|
60 |
+
b_k_2o = b_k[:, None, :] * b_k[None, :, :]
|
61 |
+
b_k_2o = tl.reshape(b_k_2o, [BK * BK, BT]).to(b_k.dtype)
|
62 |
+
# [BT, BV]
|
63 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
64 |
+
# [BT, BK]
|
65 |
+
b_q = (tl.load(p_q, boundary_check=(0, 1)) * scale).to(b_k.dtype)
|
66 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
67 |
+
b_z = tl.zeros([BT], dtype=tl.float32)
|
68 |
+
|
69 |
+
# interchunk
|
70 |
+
# zero-order
|
71 |
+
b_o += b_h_0o
|
72 |
+
b_z += k_0o
|
73 |
+
# first-order
|
74 |
+
b_o += tl.dot(b_q, b_h_1o.to(b_q.dtype), allow_tf32=False)
|
75 |
+
b_z += tl.sum(b_q * k_1o, axis=1)
|
76 |
+
# second-order
|
77 |
+
b_q_2o = b_q[:, :, None] * b_q[:, None, :]
|
78 |
+
b_q_2o = tl.reshape(b_q_2o, [BT, BK * BK]).to(b_k.dtype)
|
79 |
+
b_o += tl.dot(b_q_2o, b_h_2o.to(b_q_2o.dtype), allow_tf32=False) * 0.5
|
80 |
+
b_z += tl.sum(b_q_2o * k_2o, axis=1) * 0.5
|
81 |
+
|
82 |
+
# update running statistics
|
83 |
+
k_1o += tl.sum(b_k, axis=1)[None, :]
|
84 |
+
k_2o += tl.sum(b_k_2o, axis=1)[None, :]
|
85 |
+
k_0o += BT
|
86 |
+
|
87 |
+
# intrachunk
|
88 |
+
# [BT, BT]
|
89 |
+
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
90 |
+
b_s = 1 + b_s + 0.5 * b_s * b_s
|
91 |
+
b_s = tl.where(m_s, b_s, 0)
|
92 |
+
b_z += tl.sum(b_s, axis=1)
|
93 |
+
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
94 |
+
# [TB, BV]
|
95 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
96 |
+
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=(i * BT + tl.arange(0, BT)) < T)
|
97 |
+
|
98 |
+
# update hidden state
|
99 |
+
# [BK, BV]
|
100 |
+
b_h_2o = b_h_2o + tl.dot(b_k_2o.to(b_v.dtype), b_v, allow_tf32=False)
|
101 |
+
b_h_1o = b_h_1o + tl.dot(b_k, b_v, allow_tf32=False)
|
102 |
+
b_h_0o = b_h_0o + tl.sum(b_v, axis=0)
|
103 |
+
|
104 |
+
p_q = tl.advance(p_q, (BT, 0))
|
105 |
+
p_k = tl.advance(p_k, (0, BT))
|
106 |
+
p_v = tl.advance(p_v, (BT, 0))
|
107 |
+
p_o = tl.advance(p_o, (BT, 0))
|
108 |
+
p_z += BT
|
109 |
+
|
110 |
+
|
111 |
+
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
|
112 |
+
@triton.jit
|
113 |
+
def fused_chunk_based_bwd_kernel(
|
114 |
+
# NV: number of split in the V dimension. NK: number of split in the K dimension
|
115 |
+
q,
|
116 |
+
k,
|
117 |
+
v,
|
118 |
+
do,
|
119 |
+
dz,
|
120 |
+
dq,
|
121 |
+
dk,
|
122 |
+
dv,
|
123 |
+
scale, # K ** -0.5
|
124 |
+
T,
|
125 |
+
B: tl.constexpr,
|
126 |
+
H: tl.constexpr,
|
127 |
+
K: tl.constexpr,
|
128 |
+
V: tl.constexpr,
|
129 |
+
BT: tl.constexpr,
|
130 |
+
BK: tl.constexpr,
|
131 |
+
BV: tl.constexpr,
|
132 |
+
):
|
133 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
134 |
+
|
135 |
+
o_i = tl.arange(0, BT)
|
136 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
137 |
+
|
138 |
+
# [BV], zero-order taylor expansion
|
139 |
+
# b_h_0o = tl.zeros([BV], dtype=tl.float32)
|
140 |
+
# [BK, BV], first-order taylor expansion
|
141 |
+
b_h_1o = tl.zeros([BV, BK], dtype=tl.float32)
|
142 |
+
# [BK, BK, BV] second-order taylor expansion
|
143 |
+
b_h_2o = tl.zeros([BV, BK*BK], dtype=tl.float32)
|
144 |
+
|
145 |
+
k_1o = tl.zeros([1, BK], dtype=tl.float32)
|
146 |
+
k_2o = tl.zeros([1, BK * BK], dtype=tl.float32)
|
147 |
+
|
148 |
+
for i in range(0, tl.cdiv(T, BT)):
|
149 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
150 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
151 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1))
|
152 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0))
|
153 |
+
p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * T*K, (T, K), (K, 1), (i*BT, i_k*BK), (BT, BK), (1, 0))
|
154 |
+
p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i * BT
|
155 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
156 |
+
|
157 |
+
# load tensors
|
158 |
+
# [BT, BK]
|
159 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
160 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
161 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
162 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
163 |
+
b_dz = tl.load(p_dz, mask=(tl.arange(0, BT) + i * BT) < T)
|
164 |
+
# [BV, BT]
|
165 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
166 |
+
|
167 |
+
# inter-chunk
|
168 |
+
b_dq += tl.dot(b_do, (b_h_1o).to(b_do.dtype), allow_tf32=False)
|
169 |
+
if i_v == 0:
|
170 |
+
b_dq += b_dz[:, None] * k_1o
|
171 |
+
b_dq_2o = tl.dot(b_do, (b_h_2o).to(b_do.dtype), allow_tf32=False) * 0.5
|
172 |
+
if i_v == 0:
|
173 |
+
b_dq_2o += (b_dz[:, None] * k_2o) * 0.5
|
174 |
+
b_dq_2o = tl.reshape(b_dq_2o, [BT, BK, BK])
|
175 |
+
b_dq += tl.sum(b_dq_2o * b_q[:, :, None], axis=1)
|
176 |
+
b_dq += tl.sum(b_dq_2o * b_q[:, None, :], axis=2)
|
177 |
+
b_dq *= scale
|
178 |
+
|
179 |
+
# intra-chunk
|
180 |
+
# [BT, BT]
|
181 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
182 |
+
if i_v == 0:
|
183 |
+
b_ds += b_dz[:, None]
|
184 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
185 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
186 |
+
b_s = tl.where(m_s, b_s, 0)
|
187 |
+
b_dq += tl.dot((b_ds * (1 + b_s)).to(b_q.dtype), b_k, allow_tf32=False)
|
188 |
+
|
189 |
+
# store
|
190 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
191 |
+
|
192 |
+
# update hidden state
|
193 |
+
# [BT, BK*BK]
|
194 |
+
b_k_2o = b_k[:, :, None] * b_k[:, None, :]
|
195 |
+
b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype)
|
196 |
+
# [BV, BK*BK]
|
197 |
+
b_h_2o = b_h_2o + tl.dot(b_v, b_k_2o.to(b_v.dtype), allow_tf32=False)
|
198 |
+
# [BV, BK]
|
199 |
+
b_h_1o = b_h_1o + tl.dot(b_v, b_k, allow_tf32=False)
|
200 |
+
|
201 |
+
if i_v == 0:
|
202 |
+
# update running statistics
|
203 |
+
k_1o += tl.sum(b_k, axis=0)[None, :]
|
204 |
+
k_2o += tl.sum(b_k_2o, axis=0)[None, :]
|
205 |
+
|
206 |
+
tl.debug_barrier()
|
207 |
+
b_h_1o = None
|
208 |
+
b_h_2o = None
|
209 |
+
|
210 |
+
# [BK, BV], first-order taylor expansion
|
211 |
+
b_dh_1o = tl.zeros([BK, BV], dtype=tl.float32)
|
212 |
+
# [BK, BK, BV] second-order taylor expansion
|
213 |
+
b_dh_2o = tl.zeros([BK*BK, BV], dtype=tl.float32)
|
214 |
+
b_dh_0o = tl.zeros([BV], dtype=tl.float32)
|
215 |
+
m_s = tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :]
|
216 |
+
|
217 |
+
dq_1o = tl.zeros([1, BK], dtype=tl.float32)
|
218 |
+
dq_2o = tl.zeros([BK * BK, 1], dtype=tl.float32)
|
219 |
+
|
220 |
+
for i in range(tl.cdiv(T, BT) * BT - BT, -BT, -BT):
|
221 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i), (BK, BT), (0, 1))
|
222 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i, i_k * BK), (BT, BK), (1, 0))
|
223 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i, i_v * BV), (BT, BV), (1, 0))
|
224 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i, i_v * BV), (BT, BV), (1, 0))
|
225 |
+
p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * T*K, (T, K), (K, 1), (i, i_k*BK), (BT, BK), (1, 0))
|
226 |
+
p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * T*V, (T, V), (V, 1), (i, i_v*BV), (BT, BV), (1, 0))
|
227 |
+
p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i
|
228 |
+
|
229 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
230 |
+
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
|
231 |
+
|
232 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
233 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
234 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
235 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
236 |
+
b_dz = tl.load(p_dz, mask=(tl.arange(0, BT)+i) < T)
|
237 |
+
b_q = (b_q * scale).to(b_k.dtype)
|
238 |
+
|
239 |
+
# intra chunk
|
240 |
+
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False)
|
241 |
+
if i_v == 0:
|
242 |
+
b_ds += b_dz[None, :]
|
243 |
+
b_ds = tl.where(m_s, b_ds, 0)
|
244 |
+
b_s = tl.dot(b_k, b_q, allow_tf32=False)
|
245 |
+
b_s2 = 1 + b_s + 0.5 * b_s * b_s
|
246 |
+
b_s = tl.where(m_s, b_s, 0)
|
247 |
+
b_s2 = tl.where(m_s, b_s2, 0)
|
248 |
+
b_ds *= (1+b_s)
|
249 |
+
|
250 |
+
b_dk += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_q), allow_tf32=False)
|
251 |
+
b_dv += tl.dot(b_s2.to(b_do.dtype), b_do, allow_tf32=False)
|
252 |
+
|
253 |
+
# inter chunk
|
254 |
+
b_k_2o = b_k[:, :, None] * b_k[:, None, :]
|
255 |
+
b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype)
|
256 |
+
|
257 |
+
b_dv += tl.dot(b_k, b_dh_1o.to(b_k.dtype), allow_tf32=False)
|
258 |
+
b_dv += tl.dot(b_k_2o, b_dh_2o.to(b_k.dtype), allow_tf32=False)
|
259 |
+
b_dv += b_dh_0o
|
260 |
+
|
261 |
+
b_dk += tl.dot(b_v, tl.trans(b_dh_1o).to(b_k.dtype), allow_tf32=False)
|
262 |
+
|
263 |
+
if i_v == 0:
|
264 |
+
b_dk += dq_1o
|
265 |
+
|
266 |
+
b_dk_2o = tl.dot(b_dh_2o.to(b_k.dtype), tl.trans(b_v), allow_tf32=False)
|
267 |
+
if i_v == 0:
|
268 |
+
b_dk_2o += dq_2o
|
269 |
+
b_dk_2o = tl.reshape(b_dk_2o, [BK, BK, BT])
|
270 |
+
b_k_fp32 = tl.trans(b_k.to(tl.float32))
|
271 |
+
b_dk2 = tl.sum(b_dk_2o * b_k_fp32[:, None, :], axis=0)
|
272 |
+
b_dk2 += tl.sum(b_dk_2o * b_k_fp32[None, :, :], axis=1)
|
273 |
+
b_dk += tl.trans(b_dk2)
|
274 |
+
|
275 |
+
# hidden state update
|
276 |
+
b_dh_0o += tl.sum(b_do, axis=0)
|
277 |
+
b_dh_1o = b_dh_1o + tl.dot(b_q, b_do, allow_tf32=False)
|
278 |
+
b_q_2o = b_q[None, :, :] * b_q[:, None, :]
|
279 |
+
b_q_2o = tl.reshape(b_q_2o, [BK * BK, BT]).to(b_k.dtype)
|
280 |
+
b_dh_2o = b_dh_2o + tl.dot(b_q_2o, b_do, allow_tf32=False) * 0.5
|
281 |
+
|
282 |
+
if i_v == 0:
|
283 |
+
dq_1o += (tl.sum(b_dz[None, :] * b_q, axis=1))[None, :]
|
284 |
+
dq_2o += (tl.sum(b_dz[None, :] * b_q_2o, axis=1) * 0.5)[:, None]
|
285 |
+
|
286 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
287 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
288 |
+
|
289 |
+
|
290 |
+
class FusedChunkBasedFunction(torch.autograd.Function):
|
291 |
+
|
292 |
+
@staticmethod
|
293 |
+
@input_guard
|
294 |
+
@autocast_custom_fwd
|
295 |
+
def forward(ctx, q, k, v, scale=1):
|
296 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
297 |
+
|
298 |
+
scale = scale
|
299 |
+
BT = 16
|
300 |
+
BK, BV = min(K, 16), min(V, 32)
|
301 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
302 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
303 |
+
|
304 |
+
num_warps = 4
|
305 |
+
|
306 |
+
# the norm of o might explode, so we need to use float32 here
|
307 |
+
o = q.new_empty(NK, B, H, T, V, dtype=torch.float32)
|
308 |
+
z = q.new_empty(NK, B, H, T, dtype=torch.float32)
|
309 |
+
|
310 |
+
grid = (NV, NK, B * H)
|
311 |
+
fused_chunk_based_fwd_kernel[grid](
|
312 |
+
q, k, v, o, z,
|
313 |
+
scale,
|
314 |
+
T=T, B=B, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
315 |
+
num_warps=num_warps,
|
316 |
+
)
|
317 |
+
o = o.sum(0)
|
318 |
+
z = z.sum(0)
|
319 |
+
ctx.save_for_backward(q, k, v)
|
320 |
+
ctx.scale = scale
|
321 |
+
return o.to(q.dtype), z.to(z.dtype)
|
322 |
+
|
323 |
+
@staticmethod
|
324 |
+
@input_guard
|
325 |
+
@autocast_custom_bwd
|
326 |
+
def backward(ctx, do, dz):
|
327 |
+
q, k, v = ctx.saved_tensors
|
328 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
329 |
+
scale = ctx.scale
|
330 |
+
|
331 |
+
BT = 16
|
332 |
+
BK, BV = min(K, 16), min(V, 32)
|
333 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
334 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
335 |
+
num_stages = 1
|
336 |
+
num_warps = 4
|
337 |
+
|
338 |
+
dq = q.new_empty(NV, B, H, T, K)
|
339 |
+
dk = q.new_empty(NV, B, H, T, K)
|
340 |
+
dv = q.new_empty(NK, B, H, T, V)
|
341 |
+
grid = (NV, NK, B * H)
|
342 |
+
|
343 |
+
fused_chunk_based_bwd_kernel[grid](
|
344 |
+
q, k, v, do, dz, dq, dk, dv,
|
345 |
+
scale,
|
346 |
+
T=T, B=B, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
347 |
+
num_warps=num_warps,
|
348 |
+
num_stages=num_stages
|
349 |
+
)
|
350 |
+
dq = dq.sum(0)
|
351 |
+
dk = dk.sum(0)
|
352 |
+
dv = dv.sum(0)
|
353 |
+
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None
|
354 |
+
|
355 |
+
|
356 |
+
def fused_chunk_based(
|
357 |
+
q: torch.Tensor,
|
358 |
+
k: torch.Tensor,
|
359 |
+
v: torch.Tensor,
|
360 |
+
scale: Optional[float] = None,
|
361 |
+
use_norm: bool = True,
|
362 |
+
head_first: bool = True
|
363 |
+
):
|
364 |
+
assert q.shape[-1] <= 16, 'only support feature dimension up to 16.'
|
365 |
+
if scale is None:
|
366 |
+
scale = q.shape[-1] ** -0.5
|
367 |
+
if not head_first:
|
368 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
369 |
+
o, z = FusedChunkBasedFunction.apply(q, k, v, scale)
|
370 |
+
if use_norm:
|
371 |
+
o = o / (z[..., None] + 1e-6)
|
372 |
+
if not head_first:
|
373 |
+
o = o.transpose(1, 2)
|
374 |
+
return o.to(q.dtype)
|
fla/ops/based/naive.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
|
9 |
+
def naive_parallel_based(
|
10 |
+
q: torch.Tensor,
|
11 |
+
k: torch.Tensor,
|
12 |
+
v: torch.Tensor,
|
13 |
+
scale: Optional[float] = None,
|
14 |
+
use_norm: bool = True
|
15 |
+
):
|
16 |
+
if scale is None:
|
17 |
+
scale = q.shape[-1] ** -0.5
|
18 |
+
q = q * scale
|
19 |
+
attn = q @ k.transpose(-2, -1)
|
20 |
+
attn = 1 + attn + 1/2 * (attn ** 2)
|
21 |
+
attn.masked_fill_(~torch.tril(torch.ones(
|
22 |
+
q.shape[-2], q.shape[-2], dtype=torch.bool, device=q.device)), 0)
|
23 |
+
o = attn @ v
|
24 |
+
if use_norm:
|
25 |
+
z = attn.sum(-1)
|
26 |
+
return o / (z[..., None] + 1e-6)
|
27 |
+
else:
|
28 |
+
return o
|
29 |
+
|
30 |
+
|
31 |
+
def naive_chunk_based(q, k, v, chunk_size=256):
|
32 |
+
q = q * (q.shape[-1] ** -0.5)
|
33 |
+
# compute normalizer.
|
34 |
+
k_cumsum = torch.cumsum(k, dim=-2)
|
35 |
+
kk_cumsum = torch.cumsum(k.unsqueeze(-1) * k.unsqueeze(-2), dim=-3)
|
36 |
+
# first
|
37 |
+
z = (q * k_cumsum).sum(-1)
|
38 |
+
# second order
|
39 |
+
z += (q.unsqueeze(-1) * q.unsqueeze(-2) * kk_cumsum).sum((-1, -2)) * 0.5
|
40 |
+
# zero-th order
|
41 |
+
z += (torch.arange(0, q.shape[-2]).to(z.device) * 1.0 + 1.0)[None, None, :]
|
42 |
+
|
43 |
+
# compute o
|
44 |
+
# constant term
|
45 |
+
_o = v.cumsum(-2)
|
46 |
+
|
47 |
+
q = rearrange(q, 'b h (n c) d -> b h n c d', c=chunk_size)
|
48 |
+
|
49 |
+
k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size)
|
50 |
+
v = rearrange(v, 'b h (n c) d -> b h n c d', c=chunk_size)
|
51 |
+
|
52 |
+
intra_chunk_attn = q @ k.transpose(-2, -1)
|
53 |
+
intra_chunk_attn = intra_chunk_attn + 1/2 * (intra_chunk_attn ** 2)
|
54 |
+
intra_chunk_attn.masked_fill_(~torch.tril(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device)), 0)
|
55 |
+
o = intra_chunk_attn @ v
|
56 |
+
|
57 |
+
# quadractic term
|
58 |
+
kv = torch.einsum('b h n c x, b h n c y, b h n c z -> b h n x y z', k, k, v)
|
59 |
+
kv = kv.cumsum(2)
|
60 |
+
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
|
61 |
+
|
62 |
+
o += 0.5 * torch.einsum('b h n x y z, b h n c x, b h n c y -> b h n c z', kv, q, q)
|
63 |
+
|
64 |
+
# linear term
|
65 |
+
kv = torch.einsum('b h n c x, b h n c y -> b h n x y', k, v)
|
66 |
+
kv = kv.cumsum(2)
|
67 |
+
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
|
68 |
+
o += torch.einsum('b h n x y, b h n c x -> b h n c y', kv, q)
|
69 |
+
|
70 |
+
o = rearrange(o, 'b h n c d -> b h (n c) d')
|
71 |
+
o = o + _o
|
72 |
+
return o / (z[..., None] + 1e-6)
|
fla/ops/based/parallel.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
11 |
+
|
12 |
+
# Based: An Educational and Effective Sequence Mixer
|
13 |
+
# https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based
|
14 |
+
|
15 |
+
|
16 |
+
@triton.jit(do_not_specialize=['T'])
|
17 |
+
def parallel_based_fwd_kernel(
|
18 |
+
q,
|
19 |
+
k,
|
20 |
+
v,
|
21 |
+
o,
|
22 |
+
z,
|
23 |
+
scale,
|
24 |
+
T,
|
25 |
+
B: tl.constexpr,
|
26 |
+
H: tl.constexpr,
|
27 |
+
K: tl.constexpr,
|
28 |
+
V: tl.constexpr,
|
29 |
+
BTL: tl.constexpr,
|
30 |
+
BTS: tl.constexpr,
|
31 |
+
BK: tl.constexpr,
|
32 |
+
BV: tl.constexpr,
|
33 |
+
):
|
34 |
+
# i_c: chunk index. used for sequence parallelism
|
35 |
+
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
36 |
+
NV = tl.cdiv(V, BV)
|
37 |
+
i_k = i_kv // (NV)
|
38 |
+
i_v = i_kv % (NV)
|
39 |
+
|
40 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0))
|
41 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BTS), (0, 1))
|
42 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BTS, BV), (1, 0))
|
43 |
+
|
44 |
+
# [BQ, BD] block Q, in the shared memory throughout the whole kernel
|
45 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
46 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
47 |
+
b_o = tl.zeros([BTL, BV], dtype=tl.float32)
|
48 |
+
b_z = tl.zeros([BTL], dtype=tl.float32)
|
49 |
+
|
50 |
+
# Q block and K block have no overlap
|
51 |
+
# no need for mask, thereby saving flops
|
52 |
+
for _ in range(0, i_c * BTL, BTS):
|
53 |
+
# [BK, BTS]
|
54 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
55 |
+
|
56 |
+
# [BTS, BV]
|
57 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
58 |
+
# [BTL, BTS]
|
59 |
+
b_s = tl.dot(b_q, (b_k), allow_tf32=False)
|
60 |
+
b_s = 1 + b_s + 0.5 * b_s * b_s
|
61 |
+
b_z += tl.sum(b_s, axis=1)
|
62 |
+
|
63 |
+
# [BQ, BD]
|
64 |
+
b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)
|
65 |
+
p_k = tl.advance(p_k, (0, BTS))
|
66 |
+
p_v = tl.advance(p_v, (BTS, 0))
|
67 |
+
|
68 |
+
# # rescale interchunk output
|
69 |
+
tl.debug_barrier()
|
70 |
+
o_q = tl.arange(0, BTL)
|
71 |
+
# # sync threads, easy for compiler to optimize
|
72 |
+
# tl.debug_barrier()
|
73 |
+
|
74 |
+
o_k = tl.arange(0, BTS)
|
75 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_c * BTL), (BK, BTS), (0, 1))
|
76 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_c * BTL, i_v * BV), (BTS, BV), (1, 0))
|
77 |
+
# Q block and K block have overlap. masks required
|
78 |
+
for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS):
|
79 |
+
# [BK, BTS]
|
80 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
81 |
+
# [BTS, BV]
|
82 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
83 |
+
# [BTL, BTS]
|
84 |
+
m_s = o_q[:, None] >= o_k[None, :]
|
85 |
+
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
86 |
+
b_s = 1 + b_s + 0.5 * b_s * b_s
|
87 |
+
b_s = tl.where(m_s, b_s, 0)
|
88 |
+
b_z += tl.sum(b_s, axis=1)
|
89 |
+
# [BTL, BV]
|
90 |
+
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
91 |
+
|
92 |
+
p_k = tl.advance(p_k, (0, BTS))
|
93 |
+
p_v = tl.advance(p_v, (BTS, 0))
|
94 |
+
o_k += BTS
|
95 |
+
|
96 |
+
p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
97 |
+
p_z = z + (i_bh + B * H * i_k) * T + i_c * BTL + tl.arange(0, BTL)
|
98 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
99 |
+
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=((i_c * BTL + tl.arange(0, BTL)) < T))
|
100 |
+
|
101 |
+
|
102 |
+
@triton.jit
|
103 |
+
def _parallel_based_bwd_dq(
|
104 |
+
i_bh,
|
105 |
+
i_c,
|
106 |
+
i_k,
|
107 |
+
i_v,
|
108 |
+
q,
|
109 |
+
k,
|
110 |
+
v,
|
111 |
+
do,
|
112 |
+
dz,
|
113 |
+
dq,
|
114 |
+
scale,
|
115 |
+
T,
|
116 |
+
B: tl.constexpr,
|
117 |
+
H: tl.constexpr,
|
118 |
+
BTL: tl.constexpr,
|
119 |
+
BTS: tl.constexpr,
|
120 |
+
BK: tl.constexpr,
|
121 |
+
BV: tl.constexpr,
|
122 |
+
K: tl.constexpr,
|
123 |
+
V: tl.constexpr,
|
124 |
+
):
|
125 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0))
|
126 |
+
p_q = tl.make_block_ptr(q + (i_bh) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
127 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
128 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
129 |
+
|
130 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
131 |
+
b_dq = tl.zeros([BTL, BK], dtype=tl.float32)
|
132 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BTS, BK), (1, 0))
|
133 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, 0), (BV, BTS), (0, 1))
|
134 |
+
p_dz = dz + i_bh * T + i_c * BTL + tl.arange(0, BTL)
|
135 |
+
b_dz = tl.load(p_dz, mask=(i_c * BTL + tl.arange(0, BTL)) < T)
|
136 |
+
|
137 |
+
for _ in range(0, i_c * BTL, BTS):
|
138 |
+
# [BTS, BK]
|
139 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
140 |
+
# [BV, BTS]
|
141 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
142 |
+
# [BTL, BTS]
|
143 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
144 |
+
if i_v == 0:
|
145 |
+
b_ds += b_dz[:, None]
|
146 |
+
else:
|
147 |
+
b_ds = b_ds
|
148 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
149 |
+
# [BQ, BD]
|
150 |
+
b_dq += tl.dot((b_ds * (1 + b_s)).to(b_v.dtype), b_k, allow_tf32=False)
|
151 |
+
p_k = tl.advance(p_k, (BTS, 0))
|
152 |
+
p_v = tl.advance(p_v, (0, BTS))
|
153 |
+
|
154 |
+
b_dq *= scale
|
155 |
+
o_q = tl.arange(0, BTL)
|
156 |
+
o_k = tl.arange(0, BTS)
|
157 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_c * BTL, i_k * BK), (BTS, BK), (1, 0))
|
158 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i_c * BTL), (BV, BTS), (0, 1))
|
159 |
+
# Q block and K block have overlap. masks required
|
160 |
+
for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS):
|
161 |
+
# [BTS, BK]
|
162 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
163 |
+
# [BV, BTS]
|
164 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
165 |
+
# [BTL, BTS]
|
166 |
+
m_s = o_q[:, None] >= o_k[None, :]
|
167 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
168 |
+
if i_v == 0:
|
169 |
+
b_ds += b_dz[:, None]
|
170 |
+
else:
|
171 |
+
b_ds = b_ds
|
172 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
173 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
174 |
+
b_s = tl.where(m_s, b_s, 0)
|
175 |
+
# [BTL, BK]
|
176 |
+
b_dq += tl.dot((b_ds + b_ds * b_s).to(b_k.dtype), b_k, allow_tf32=False)
|
177 |
+
p_k = tl.advance(p_k, (BTS, 0))
|
178 |
+
p_v = tl.advance(p_v, (0, BTS))
|
179 |
+
o_k += BTS
|
180 |
+
p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
181 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
182 |
+
return
|
183 |
+
|
184 |
+
|
185 |
+
@triton.jit
|
186 |
+
def _parallel_based_bwd_dkv(
|
187 |
+
i_bh,
|
188 |
+
i_c,
|
189 |
+
i_k,
|
190 |
+
i_v,
|
191 |
+
q,
|
192 |
+
k,
|
193 |
+
v,
|
194 |
+
do,
|
195 |
+
dz,
|
196 |
+
dk,
|
197 |
+
dv,
|
198 |
+
scale,
|
199 |
+
T,
|
200 |
+
B: tl.constexpr,
|
201 |
+
H: tl.constexpr,
|
202 |
+
BTL: tl.constexpr,
|
203 |
+
BTS: tl.constexpr,
|
204 |
+
BK: tl.constexpr,
|
205 |
+
BV: tl.constexpr,
|
206 |
+
K: tl.constexpr,
|
207 |
+
V: tl.constexpr,
|
208 |
+
):
|
209 |
+
# compute dk dv
|
210 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0))
|
211 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0))
|
212 |
+
b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load(p_v, boundary_check=(0, 1))
|
213 |
+
b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros([BTL, BV], dtype=tl.float32)
|
214 |
+
|
215 |
+
for i in range((tl.cdiv(T, BTS) * BTS)-BTS, (i_c + 1) * BTL - BTS, -BTS):
|
216 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i), (BK, BTS), (0, 1))
|
217 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (V, T), (1, V), (i_v * BV, i), (BV, BTS), (0, 1))
|
218 |
+
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
|
219 |
+
b_q = tl.load(p_q, boundary_check=(0, 1)) # [BK, BTS]
|
220 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) # [BV, BTS]
|
221 |
+
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T)
|
222 |
+
b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * scale # [BTL, BTS]
|
223 |
+
b_s2 = 1 + b_s + 0.5 * b_s * b_s
|
224 |
+
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
|
225 |
+
b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale
|
226 |
+
if i_v == 0:
|
227 |
+
b_ds += b_dz[None, :] * scale
|
228 |
+
else:
|
229 |
+
b_ds = b_ds
|
230 |
+
b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False)
|
231 |
+
|
232 |
+
tl.debug_barrier()
|
233 |
+
o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL)
|
234 |
+
for i in range(i_c*BTL, (i_c+1)*BTL, BTS):
|
235 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i), (BK, BTS), (0, 1))
|
236 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (V, T), (1, V), (i_v * BV, i), (BV, BTS), (0, 1))
|
237 |
+
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
|
238 |
+
b_q = tl.load(p_q, boundary_check=(0, 1)) # [BD, BQ]
|
239 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
240 |
+
b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T)
|
241 |
+
# [BK, BQ]
|
242 |
+
m_s = o_k[:, None] <= o_q[None, :]
|
243 |
+
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
|
244 |
+
b_s2 = 1 + b_s + 0.5 * b_s * b_s
|
245 |
+
b_s = tl.where(m_s, b_s, 0)
|
246 |
+
b_s2 = tl.where(m_s, b_s2, 0)
|
247 |
+
|
248 |
+
b_ds = tl.dot(b_v, b_do, allow_tf32=False)
|
249 |
+
if i_v == 0:
|
250 |
+
b_ds += b_dz[None, :]
|
251 |
+
else:
|
252 |
+
b_ds = b_ds
|
253 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
254 |
+
# [BK, BD]
|
255 |
+
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
|
256 |
+
b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False)
|
257 |
+
o_q += BTS
|
258 |
+
|
259 |
+
p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * T*K, (T, K), (K, 1), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0))
|
260 |
+
p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * T*V, (T, V), (V, 1), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0))
|
261 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
262 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
263 |
+
return
|
264 |
+
|
265 |
+
|
266 |
+
@triton.jit(do_not_specialize=['T'])
|
267 |
+
def parallel_based_bwd_kernel(
|
268 |
+
q,
|
269 |
+
k,
|
270 |
+
v,
|
271 |
+
do,
|
272 |
+
dz,
|
273 |
+
dq,
|
274 |
+
dk,
|
275 |
+
dv,
|
276 |
+
scale,
|
277 |
+
T,
|
278 |
+
B: tl.constexpr,
|
279 |
+
H: tl.constexpr,
|
280 |
+
K: tl.constexpr,
|
281 |
+
V: tl.constexpr,
|
282 |
+
BTL: tl.constexpr,
|
283 |
+
BTS: tl.constexpr,
|
284 |
+
BK: tl.constexpr,
|
285 |
+
BV: tl.constexpr,
|
286 |
+
):
|
287 |
+
i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
288 |
+
NV = tl.cdiv(V, BV)
|
289 |
+
i_k = i_kv // (NV)
|
290 |
+
i_v = i_kv % NV
|
291 |
+
_parallel_based_bwd_dq(
|
292 |
+
i_bh, i_c, i_k, i_v,
|
293 |
+
q, k, v, do, dz, dq,
|
294 |
+
scale, T, B, H, BTL, BTS, BK, BV, K, V
|
295 |
+
)
|
296 |
+
tl.debug_barrier()
|
297 |
+
_parallel_based_bwd_dkv(
|
298 |
+
i_bh, i_c, i_k, i_v,
|
299 |
+
q, k, v, do, dz, dk, dv,
|
300 |
+
scale, T, B, H, BTL, BTS, BK, BV, K, V
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
class ParallelBasedFunction(torch.autograd.Function):
|
305 |
+
|
306 |
+
@staticmethod
|
307 |
+
@input_guard
|
308 |
+
@autocast_custom_fwd
|
309 |
+
def forward(ctx, q, k, v, scale):
|
310 |
+
BTL, BTS = 128, 32
|
311 |
+
assert BTL % BTS == 0
|
312 |
+
# assert q.shape[-1] % 16 == 0
|
313 |
+
BK = min(128, triton.next_power_of_2(k.shape[-1]))
|
314 |
+
BV = min(128, triton.next_power_of_2(v.shape[-1]))
|
315 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
316 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
317 |
+
num_stages = 2
|
318 |
+
num_warps = 4
|
319 |
+
NK = triton.cdiv(K, BK)
|
320 |
+
NV = triton.cdiv(V, BV)
|
321 |
+
grid = (NK * NV, triton.cdiv(T, BTL), B * H)
|
322 |
+
|
323 |
+
assert NK == 1, "will encounter some synchronization issue if not."
|
324 |
+
|
325 |
+
o = torch.empty(NK, B, H, T, V, device=q.device)
|
326 |
+
z = torch.empty(NK, B, H, T, device=q.device)
|
327 |
+
parallel_based_fwd_kernel[grid](
|
328 |
+
q, k, v, o, z,
|
329 |
+
scale,
|
330 |
+
B=B,
|
331 |
+
H=H,
|
332 |
+
T=T,
|
333 |
+
K=K,
|
334 |
+
V=V,
|
335 |
+
BTL=BTL,
|
336 |
+
BTS=BTS,
|
337 |
+
BK=BK,
|
338 |
+
BV=BV,
|
339 |
+
num_warps=num_warps,
|
340 |
+
num_stages=num_stages
|
341 |
+
)
|
342 |
+
ctx.save_for_backward(q, k, v)
|
343 |
+
ctx.scale = scale
|
344 |
+
return o.sum(0).to(q.dtype), z.sum(0).to(q.dtype)
|
345 |
+
|
346 |
+
@staticmethod
|
347 |
+
@input_guard
|
348 |
+
@autocast_custom_bwd
|
349 |
+
def backward(ctx, do, dz):
|
350 |
+
q, k, v = ctx.saved_tensors
|
351 |
+
scale = ctx.scale
|
352 |
+
BTL, BTS = 64, 32
|
353 |
+
assert BTL % BTS == 0
|
354 |
+
BK = min(128, triton.next_power_of_2(k.shape[-1]))
|
355 |
+
BV = min(128, triton.next_power_of_2(v.shape[-1]))
|
356 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
357 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
358 |
+
num_stages = 2
|
359 |
+
num_warps = 4
|
360 |
+
NK = triton.cdiv(K, BK)
|
361 |
+
NV = triton.cdiv(V, BV)
|
362 |
+
grid = (NK * NV, triton.cdiv(T, BTL), B * H)
|
363 |
+
|
364 |
+
assert NK == 1, "will encounter some synchronization issue if not"
|
365 |
+
|
366 |
+
dq = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device)
|
367 |
+
dk = torch.empty(NV, B, H, T, K, dtype=q.dtype, device=q.device)
|
368 |
+
dv = torch.empty(NK, B, H, T, V, dtype=q.dtype, device=q.device)
|
369 |
+
|
370 |
+
parallel_based_bwd_kernel[grid](
|
371 |
+
q, k, v, do, dz, dq, dk, dv,
|
372 |
+
scale,
|
373 |
+
B=B,
|
374 |
+
H=H,
|
375 |
+
T=T,
|
376 |
+
K=K,
|
377 |
+
V=V,
|
378 |
+
BTL=BTL,
|
379 |
+
BTS=BTS,
|
380 |
+
BK=BK,
|
381 |
+
BV=BV,
|
382 |
+
num_warps=num_warps,
|
383 |
+
num_stages=num_stages
|
384 |
+
)
|
385 |
+
|
386 |
+
return dq.sum(0).to(q.dtype), dk.sum(0).to(k.dtype), dv.sum(0).to(v.dtype), None
|
387 |
+
|
388 |
+
|
389 |
+
triton_parallel_based = ParallelBasedFunction.apply
|
390 |
+
|
391 |
+
|
392 |
+
def parallel_based(
|
393 |
+
q: torch.Tensor,
|
394 |
+
k: torch.Tensor,
|
395 |
+
v: torch.Tensor,
|
396 |
+
scale: Optional[float] = None,
|
397 |
+
use_norm: bool = True,
|
398 |
+
head_first: bool = True
|
399 |
+
):
|
400 |
+
assert q.shape[-1] <= 128, "only support feature dim up to 128"
|
401 |
+
if scale is None:
|
402 |
+
scale = q.shape[-1] ** -0.5
|
403 |
+
if not head_first:
|
404 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
405 |
+
o, z = triton_parallel_based(q, k, v, scale)
|
406 |
+
if use_norm:
|
407 |
+
o = o / (z[..., None] + 1e-6)
|
408 |
+
if not head_first:
|
409 |
+
o = o.transpose(1, 2)
|
410 |
+
return o.to(q.dtype)
|
fla/ops/common/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
fla/ops/common/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (154 Bytes). View file
|
|
fla/ops/common/__pycache__/chunk_delta_h.cpython-311.pyc
ADDED
Binary file (24.5 kB). View file
|
|
fla/ops/common/__pycache__/chunk_h.cpython-311.pyc
ADDED
Binary file (25.4 kB). View file
|
|
fla/ops/common/__pycache__/chunk_o.cpython-311.pyc
ADDED
Binary file (37.8 kB). View file
|
|
fla/ops/common/__pycache__/chunk_scaled_dot_kkt.cpython-311.pyc
ADDED
Binary file (6.95 kB). View file
|
|
fla/ops/common/__pycache__/fused_recurrent.cpython-311.pyc
ADDED
Binary file (33.7 kB). View file
|
|
fla/ops/common/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (5.02 kB). View file
|
|
fla/ops/common/chunk_delta_h.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.common.utils import prepare_chunk_offsets
|
11 |
+
from fla.ops.utils.op import exp
|
12 |
+
from fla.utils import check_shared_mem, is_nvidia_hopper, use_cuda_graph
|
13 |
+
|
14 |
+
NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8, 16]
|
15 |
+
|
16 |
+
|
17 |
+
@triton.heuristics({
|
18 |
+
'USE_G': lambda args: args['g'] is not None,
|
19 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
20 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
21 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
22 |
+
})
|
23 |
+
@triton.autotune(
|
24 |
+
configs=[
|
25 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
26 |
+
for num_warps in NUM_WARPS
|
27 |
+
for num_stages in [2, 3, 4]
|
28 |
+
],
|
29 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'],
|
30 |
+
use_cuda_graph=use_cuda_graph,
|
31 |
+
)
|
32 |
+
@triton.jit(do_not_specialize=['T'])
|
33 |
+
def chunk_gated_delta_rule_fwd_kernel_h(
|
34 |
+
k,
|
35 |
+
v,
|
36 |
+
d,
|
37 |
+
v_new,
|
38 |
+
g,
|
39 |
+
h,
|
40 |
+
h0,
|
41 |
+
ht,
|
42 |
+
offsets,
|
43 |
+
chunk_offsets,
|
44 |
+
T,
|
45 |
+
H: tl.constexpr,
|
46 |
+
K: tl.constexpr,
|
47 |
+
V: tl.constexpr,
|
48 |
+
BT: tl.constexpr,
|
49 |
+
BC: tl.constexpr,
|
50 |
+
BK: tl.constexpr,
|
51 |
+
BV: tl.constexpr,
|
52 |
+
NT: tl.constexpr,
|
53 |
+
USE_G: tl.constexpr,
|
54 |
+
USE_INITIAL_STATE: tl.constexpr,
|
55 |
+
STORE_FINAL_STATE: tl.constexpr,
|
56 |
+
USE_OFFSETS: tl.constexpr,
|
57 |
+
HEAD_FIRST: tl.constexpr,
|
58 |
+
):
|
59 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
60 |
+
i_n, i_h = i_nh // H, i_nh % H
|
61 |
+
if USE_OFFSETS:
|
62 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
63 |
+
T = eos - bos
|
64 |
+
NT = tl.cdiv(T, BT)
|
65 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
66 |
+
else:
|
67 |
+
bos, eos = i_n * T, i_n * T + T
|
68 |
+
NT = tl.cdiv(T, BT)
|
69 |
+
boh = i_n * NT
|
70 |
+
|
71 |
+
# [BK, BV]
|
72 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
73 |
+
if USE_INITIAL_STATE:
|
74 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
75 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
76 |
+
|
77 |
+
for i_t in range(NT):
|
78 |
+
if HEAD_FIRST:
|
79 |
+
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
80 |
+
else:
|
81 |
+
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
82 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
83 |
+
b_hc = tl.zeros([BK, BV], dtype=tl.float32)
|
84 |
+
if USE_G:
|
85 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
86 |
+
if HEAD_FIRST:
|
87 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
88 |
+
else:
|
89 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
90 |
+
else:
|
91 |
+
b_g_last = None
|
92 |
+
last_idx = None
|
93 |
+
# since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden
|
94 |
+
for i_c in range(tl.cdiv(min(BT, T - i_t * BT), BC)):
|
95 |
+
if HEAD_FIRST:
|
96 |
+
p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
97 |
+
p_d = tl.make_block_ptr(d + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
98 |
+
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
99 |
+
p_v_new = tl.make_block_ptr(v_new+i_nh*T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
100 |
+
p_g = tl.make_block_ptr(g + i_nh * T, (T,), (1,), (i_t * BT + i_c * BC,), (BC,), (0,)) if USE_G else None
|
101 |
+
else:
|
102 |
+
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
103 |
+
p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
104 |
+
p_v = tl.make_block_ptr(v+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
105 |
+
p_v_new = tl.make_block_ptr(v_new+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT+i_c*BC, i_v * BV), (BC, BV), (1, 0))
|
106 |
+
p_g = tl.make_block_ptr(g+bos*H+i_h, (T,), (H,), (i_t*BT+i_c*BC, ), (BC,), (0,)) if USE_G else None
|
107 |
+
b_g = tl.load(p_g, boundary_check=(0, )) if USE_G else None
|
108 |
+
# [BK, BC]
|
109 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
110 |
+
b_k = (b_k * exp(b_g_last - b_g)[None, :]).to(b_k.dtype) if USE_G else b_k
|
111 |
+
# [BC, BK]
|
112 |
+
b_d = tl.load(p_d, boundary_check=(0, 1))
|
113 |
+
b_d = (b_d * exp(b_g)[:, None]).to(b_d.dtype) if USE_G else b_d
|
114 |
+
# [BC, BV]
|
115 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
116 |
+
b_v2 = b_v - tl.dot(b_d, b_h.to(b_d.dtype))
|
117 |
+
# [BK, BV]
|
118 |
+
tl.store(p_v_new, b_v2.to(p_v_new.dtype.element_ty), boundary_check=(0, 1))
|
119 |
+
b_hc += tl.dot(b_k, b_v2.to(b_k.dtype), allow_tf32=False)
|
120 |
+
b_h *= exp(b_g_last) if USE_G else 1
|
121 |
+
b_h += b_hc
|
122 |
+
|
123 |
+
if STORE_FINAL_STATE:
|
124 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
125 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
126 |
+
|
127 |
+
|
128 |
+
@triton.heuristics({
|
129 |
+
'USE_G': lambda args: args['g'] is not None,
|
130 |
+
'USE_INITIAL_STATE': lambda args: args['dh0'] is not None,
|
131 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
132 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
133 |
+
})
|
134 |
+
@triton.autotune(
|
135 |
+
configs=[
|
136 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
137 |
+
for num_warps in NUM_WARPS
|
138 |
+
for num_stages in [2, 3, 4]
|
139 |
+
],
|
140 |
+
key=['BT', 'BK', 'BV', 'USE_G'],
|
141 |
+
use_cuda_graph=use_cuda_graph,
|
142 |
+
)
|
143 |
+
@triton.jit(do_not_specialize=['T'])
|
144 |
+
def chunk_gated_delta_rule_bwd_kernel_dhu(
|
145 |
+
q,
|
146 |
+
k,
|
147 |
+
d,
|
148 |
+
g,
|
149 |
+
dht,
|
150 |
+
dh0,
|
151 |
+
do,
|
152 |
+
dh,
|
153 |
+
dv,
|
154 |
+
dv2,
|
155 |
+
offsets,
|
156 |
+
chunk_offsets,
|
157 |
+
scale,
|
158 |
+
T,
|
159 |
+
H: tl.constexpr,
|
160 |
+
K: tl.constexpr,
|
161 |
+
V: tl.constexpr,
|
162 |
+
BT: tl.constexpr,
|
163 |
+
BC: tl.constexpr,
|
164 |
+
BK: tl.constexpr,
|
165 |
+
BV: tl.constexpr,
|
166 |
+
USE_G: tl.constexpr,
|
167 |
+
USE_INITIAL_STATE: tl.constexpr,
|
168 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
169 |
+
USE_OFFSETS: tl.constexpr,
|
170 |
+
HEAD_FIRST: tl.constexpr
|
171 |
+
):
|
172 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
173 |
+
i_n, i_h = i_nh // H, i_nh % H
|
174 |
+
if USE_OFFSETS:
|
175 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
176 |
+
T = eos - bos
|
177 |
+
NT = tl.cdiv(T, BT)
|
178 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
179 |
+
else:
|
180 |
+
bos, eos = i_n * T, i_n * T + T
|
181 |
+
NT = tl.cdiv(T, BT)
|
182 |
+
boh = i_n * NT
|
183 |
+
|
184 |
+
# [BK, BV]
|
185 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
186 |
+
if USE_FINAL_STATE_GRADIENT:
|
187 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
188 |
+
b_dh += tl.load(p_dht, boundary_check=(0, 1))
|
189 |
+
|
190 |
+
for i_t in range(NT - 1, -1, -1):
|
191 |
+
if HEAD_FIRST:
|
192 |
+
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
193 |
+
else:
|
194 |
+
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
195 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
196 |
+
b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32)
|
197 |
+
if USE_G:
|
198 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
199 |
+
if HEAD_FIRST:
|
200 |
+
bg_last = tl.load(g + i_nh * T + last_idx)
|
201 |
+
else:
|
202 |
+
bg_last = tl.load(g + (bos + last_idx) * H + i_h)
|
203 |
+
else:
|
204 |
+
bg_last = None
|
205 |
+
last_idx = None
|
206 |
+
for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1):
|
207 |
+
if HEAD_FIRST:
|
208 |
+
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
209 |
+
p_k = tl.make_block_ptr(k + i_nh * T*K, (T, K), (K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
210 |
+
p_d = tl.make_block_ptr(d + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
211 |
+
p_dv = tl.make_block_ptr(dv + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
212 |
+
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
213 |
+
p_g = tl.make_block_ptr(g + i_nh * T, (T,), (1,), (i_t * BT + i_c * BC,), (BC,), (0,)) if USE_G else None
|
214 |
+
p_dv2 = tl.make_block_ptr(dv2 + i_nh * T*V, (T, V), (V, 1), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
215 |
+
else:
|
216 |
+
p_q = tl.make_block_ptr(q+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
217 |
+
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0))
|
218 |
+
p_d = tl.make_block_ptr(d+(bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1))
|
219 |
+
p_dv = tl.make_block_ptr(dv+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
220 |
+
p_do = tl.make_block_ptr(do+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
221 |
+
p_g = tl.make_block_ptr(g+bos*H+i_h, (T,), (H,), (i_t*BT + i_c * BC,), (BC,), (0,)) if USE_G else None
|
222 |
+
p_dv2 = tl.make_block_ptr(dv2+(bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_c * BC, i_v * BV), (BC, BV), (1, 0))
|
223 |
+
b_g = tl.load(p_g, boundary_check=(0,)) if USE_G else None
|
224 |
+
# [BK, BT]
|
225 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
226 |
+
b_q = (b_q * scale * exp(b_g)[None, :]).to(b_q.dtype) if USE_G else (b_q * scale).to(b_q.dtype)
|
227 |
+
# [BT, BK]
|
228 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
229 |
+
b_d = tl.load(p_d, boundary_check=(0, 1))
|
230 |
+
b_k = (b_k * exp(bg_last - b_g)[:, None]).to(b_k.dtype) if USE_G else b_k
|
231 |
+
b_d = (b_d * exp(b_g)[None, :]).to(b_d.dtype) if USE_G else b_d
|
232 |
+
# [BT, V]
|
233 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
234 |
+
b_dv = tl.load(p_dv, boundary_check=(0, 1))
|
235 |
+
b_dv2 = b_dv + tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
|
236 |
+
tl.store(p_dv2, b_dv2.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
237 |
+
# [BK, BV]
|
238 |
+
b_dh_tmp += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False)
|
239 |
+
b_dh_tmp -= tl.dot(b_d, b_dv2.to(b_q.dtype), allow_tf32=False)
|
240 |
+
b_dh *= exp(bg_last) if USE_G else 1
|
241 |
+
b_dh += b_dh_tmp
|
242 |
+
|
243 |
+
if USE_INITIAL_STATE:
|
244 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
245 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
246 |
+
|
247 |
+
|
248 |
+
def chunk_gated_delta_rule_fwd_h(
|
249 |
+
k: torch.Tensor,
|
250 |
+
w: torch.Tensor,
|
251 |
+
u: torch.Tensor,
|
252 |
+
g: Optional[torch.Tensor] = None,
|
253 |
+
initial_state: Optional[torch.Tensor] = None,
|
254 |
+
output_final_state: bool = False,
|
255 |
+
offsets: Optional[torch.LongTensor] = None,
|
256 |
+
indices: Optional[torch.LongTensor] = None,
|
257 |
+
head_first: bool = True,
|
258 |
+
chunk_size: int = 64
|
259 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
260 |
+
if head_first:
|
261 |
+
B, H, T, K, V = *k.shape, u.shape[-1]
|
262 |
+
else:
|
263 |
+
B, T, H, K, V = *k.shape, u.shape[-1]
|
264 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
265 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
266 |
+
if offsets is None:
|
267 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
268 |
+
else:
|
269 |
+
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
|
270 |
+
BK = triton.next_power_of_2(K)
|
271 |
+
assert BK <= 256, "current kernel does not support head dimension larger than 256."
|
272 |
+
# H100 can have larger block size
|
273 |
+
if check_shared_mem('hopper', k.device.index):
|
274 |
+
BV = 64
|
275 |
+
BC = 64 if K <= 128 else 32
|
276 |
+
# A100
|
277 |
+
elif check_shared_mem('ampere', k.device.index):
|
278 |
+
BV = 32
|
279 |
+
BC = 64
|
280 |
+
else:
|
281 |
+
BV = 32
|
282 |
+
BC = 32 if K <= 128 else 16
|
283 |
+
BC = min(BT, BC)
|
284 |
+
NK = triton.cdiv(K, BK)
|
285 |
+
NV = triton.cdiv(V, BV)
|
286 |
+
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
|
287 |
+
|
288 |
+
if head_first:
|
289 |
+
h = k.new_empty(B, H, NT, K, V)
|
290 |
+
else:
|
291 |
+
h = k.new_empty(B, NT, H, K, V)
|
292 |
+
final_state = k.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
|
293 |
+
|
294 |
+
v_new = torch.empty_like(u)
|
295 |
+
grid = (NK, NV, N * H)
|
296 |
+
|
297 |
+
chunk_gated_delta_rule_fwd_kernel_h[grid](
|
298 |
+
k=k,
|
299 |
+
v=u,
|
300 |
+
d=w,
|
301 |
+
v_new=v_new,
|
302 |
+
g=g,
|
303 |
+
h=h,
|
304 |
+
h0=initial_state,
|
305 |
+
ht=final_state,
|
306 |
+
offsets=offsets,
|
307 |
+
chunk_offsets=chunk_offsets,
|
308 |
+
T=T,
|
309 |
+
H=H,
|
310 |
+
K=K,
|
311 |
+
V=V,
|
312 |
+
BT=BT,
|
313 |
+
BC=BC,
|
314 |
+
BK=BK,
|
315 |
+
BV=BV,
|
316 |
+
NT=NT,
|
317 |
+
HEAD_FIRST=head_first
|
318 |
+
)
|
319 |
+
return h, v_new, final_state
|
320 |
+
|
321 |
+
|
322 |
+
def chunk_gated_delta_rule_bwd_dhu(
|
323 |
+
q: torch.Tensor,
|
324 |
+
k: torch.Tensor,
|
325 |
+
w: torch.Tensor,
|
326 |
+
g: torch.Tensor,
|
327 |
+
h0: torch.Tensor,
|
328 |
+
dht: Optional[torch.Tensor],
|
329 |
+
do: torch.Tensor,
|
330 |
+
dv: torch.Tensor,
|
331 |
+
scale: float,
|
332 |
+
offsets: Optional[torch.LongTensor] = None,
|
333 |
+
indices: Optional[torch.LongTensor] = None,
|
334 |
+
head_first: bool = True,
|
335 |
+
chunk_size: int = 64
|
336 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
337 |
+
if head_first:
|
338 |
+
B, H, T, K, V = *q.shape, do.shape[-1]
|
339 |
+
else:
|
340 |
+
B, T, H, K, V = *q.shape, do.shape[-1]
|
341 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
342 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
343 |
+
if offsets is None:
|
344 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
345 |
+
else:
|
346 |
+
N, NT, chunk_offsets = len(offsets) - 1, len(indices), prepare_chunk_offsets(offsets, BT)
|
347 |
+
|
348 |
+
BK = triton.next_power_of_2(K)
|
349 |
+
assert BK <= 256, "current kernel does not support head dimension being larger than 256."
|
350 |
+
|
351 |
+
# H100
|
352 |
+
if check_shared_mem('hopper', q.device.index):
|
353 |
+
BV = 64
|
354 |
+
BC = 64 if K <= 128 else 32
|
355 |
+
# A100
|
356 |
+
elif check_shared_mem('ampere', q.device.index):
|
357 |
+
BV = 32
|
358 |
+
BC = 64 if K <= 128 else 32
|
359 |
+
else:
|
360 |
+
BV = 32 if K <= 128 else 16
|
361 |
+
BC = 16
|
362 |
+
|
363 |
+
BC = min(BT, BC)
|
364 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
365 |
+
assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization'
|
366 |
+
|
367 |
+
if head_first:
|
368 |
+
dh = q.new_empty(B, H, NT, K, V)
|
369 |
+
else:
|
370 |
+
dh = q.new_empty(B, NT, H, K, V)
|
371 |
+
dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None
|
372 |
+
dv2 = torch.empty_like(dv)
|
373 |
+
|
374 |
+
grid = (NK, NV, N * H)
|
375 |
+
chunk_gated_delta_rule_bwd_kernel_dhu[grid](
|
376 |
+
q=q,
|
377 |
+
k=k,
|
378 |
+
d=w,
|
379 |
+
g=g,
|
380 |
+
dht=dht,
|
381 |
+
dh0=dh0,
|
382 |
+
do=do,
|
383 |
+
dh=dh,
|
384 |
+
dv=dv,
|
385 |
+
dv2=dv2,
|
386 |
+
offsets=offsets,
|
387 |
+
chunk_offsets=chunk_offsets,
|
388 |
+
scale=scale,
|
389 |
+
T=T,
|
390 |
+
H=H,
|
391 |
+
K=K,
|
392 |
+
V=V,
|
393 |
+
BT=BT,
|
394 |
+
BC=BC,
|
395 |
+
BK=BK,
|
396 |
+
BV=BV,
|
397 |
+
HEAD_FIRST=head_first
|
398 |
+
)
|
399 |
+
return dh, dh0, dv2
|
fla/ops/common/chunk_h.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.common.utils import prepare_chunk_offsets
|
11 |
+
from fla.ops.utils.op import exp
|
12 |
+
from fla.utils import check_shared_mem
|
13 |
+
|
14 |
+
BKV_LIST = [32, 64] if check_shared_mem() else [16, 32]
|
15 |
+
|
16 |
+
|
17 |
+
@triton.heuristics({
|
18 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
19 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
20 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
21 |
+
})
|
22 |
+
@triton.autotune(
|
23 |
+
configs=[
|
24 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
25 |
+
for BK in BKV_LIST
|
26 |
+
for BV in BKV_LIST
|
27 |
+
for num_warps in [1, 2, 4, 8]
|
28 |
+
for num_stages in [2, 3, 4]
|
29 |
+
],
|
30 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
31 |
+
)
|
32 |
+
@triton.jit(do_not_specialize=['T'])
|
33 |
+
def chunk_fwd_kernel_h(
|
34 |
+
k,
|
35 |
+
v,
|
36 |
+
h,
|
37 |
+
g,
|
38 |
+
gk,
|
39 |
+
gv,
|
40 |
+
h0,
|
41 |
+
ht,
|
42 |
+
offsets,
|
43 |
+
split_offsets,
|
44 |
+
T,
|
45 |
+
H: tl.constexpr,
|
46 |
+
K: tl.constexpr,
|
47 |
+
V: tl.constexpr,
|
48 |
+
BT: tl.constexpr,
|
49 |
+
BS: tl.constexpr,
|
50 |
+
BK: tl.constexpr,
|
51 |
+
BV: tl.constexpr,
|
52 |
+
USE_G: tl.constexpr,
|
53 |
+
USE_GK: tl.constexpr,
|
54 |
+
USE_GV: tl.constexpr,
|
55 |
+
USE_INITIAL_STATE: tl.constexpr,
|
56 |
+
STORE_FINAL_STATE: tl.constexpr,
|
57 |
+
USE_OFFSETS: tl.constexpr,
|
58 |
+
HEAD_FIRST: tl.constexpr
|
59 |
+
):
|
60 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
61 |
+
i_n, i_h = i_nh // H, i_nh % H
|
62 |
+
if USE_OFFSETS:
|
63 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
64 |
+
T = eos - bos
|
65 |
+
NT = tl.cdiv(T, BT)
|
66 |
+
NS = tl.cdiv(T, BS)
|
67 |
+
boh = tl.load(split_offsets + i_n).to(tl.int32)
|
68 |
+
else:
|
69 |
+
bos, eos = i_n * T, i_n * T + T
|
70 |
+
NT = tl.cdiv(T, BT)
|
71 |
+
NS = tl.cdiv(T, BS)
|
72 |
+
boh = i_n * NS
|
73 |
+
|
74 |
+
# [BK, BV]
|
75 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
76 |
+
if USE_INITIAL_STATE:
|
77 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
78 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
79 |
+
|
80 |
+
for i_t in range(NT):
|
81 |
+
i_s = i_t // (BS // BT)
|
82 |
+
if HEAD_FIRST:
|
83 |
+
p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
84 |
+
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
85 |
+
|
86 |
+
o_h = (i_nh * NS + i_s).to(tl.int64) * K*V
|
87 |
+
p_h = tl.make_block_ptr(h + o_h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
88 |
+
else:
|
89 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
90 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
91 |
+
|
92 |
+
o_h = ((boh + i_s) * H + i_h).to(tl.int64) * K*V
|
93 |
+
p_h = tl.make_block_ptr(h + o_h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
94 |
+
|
95 |
+
if i_t % (BS // BT) == 0:
|
96 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
97 |
+
# [BK, BT]
|
98 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
99 |
+
# [BT, BV]
|
100 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
101 |
+
last_idx = min((i_t + 1) * BT, T) - 1
|
102 |
+
|
103 |
+
# scalar decay
|
104 |
+
if USE_G:
|
105 |
+
if HEAD_FIRST:
|
106 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
107 |
+
p_g = g + i_nh * T + i_t * BT + tl.arange(0, BT)
|
108 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
109 |
+
else:
|
110 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
111 |
+
p_g = g + bos*H + (i_t * BT + tl.arange(0, BT)) * H + i_h
|
112 |
+
b_h *= exp(b_g_last)
|
113 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
114 |
+
b_v = (b_v * exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
|
115 |
+
|
116 |
+
# vector decay, h = Diag(gk) @ h
|
117 |
+
if USE_GK:
|
118 |
+
if HEAD_FIRST:
|
119 |
+
p_gk = tl.make_block_ptr(gk + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
120 |
+
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
121 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
122 |
+
else:
|
123 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
124 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
125 |
+
|
126 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
127 |
+
b_h *= exp(b_gk_last)[:, None]
|
128 |
+
|
129 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
130 |
+
b_k = (b_k * exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
|
131 |
+
|
132 |
+
# vector decay, h = h @ Diag(gv)
|
133 |
+
if USE_GV:
|
134 |
+
if HEAD_FIRST:
|
135 |
+
p_gv = tl.make_block_ptr(gv + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
136 |
+
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
137 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
138 |
+
else:
|
139 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
140 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
141 |
+
|
142 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
143 |
+
b_h *= exp(b_gv_last)[None, :]
|
144 |
+
|
145 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
146 |
+
b_v = (b_v * exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
|
147 |
+
|
148 |
+
b_h += tl.dot(b_k, b_v)
|
149 |
+
|
150 |
+
if STORE_FINAL_STATE:
|
151 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
152 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
153 |
+
|
154 |
+
|
155 |
+
@triton.heuristics({
|
156 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
157 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
158 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
159 |
+
})
|
160 |
+
@triton.autotune(
|
161 |
+
configs=[
|
162 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
163 |
+
for BK in BKV_LIST
|
164 |
+
for BV in BKV_LIST
|
165 |
+
for num_warps in [1, 2, 4, 8]
|
166 |
+
for num_stages in [2, 3, 4]
|
167 |
+
],
|
168 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
169 |
+
)
|
170 |
+
@triton.jit(do_not_specialize=['T'])
|
171 |
+
def chunk_bwd_kernel_dh(
|
172 |
+
q,
|
173 |
+
g,
|
174 |
+
gk,
|
175 |
+
gv,
|
176 |
+
do,
|
177 |
+
dh,
|
178 |
+
dht,
|
179 |
+
dh0,
|
180 |
+
offsets,
|
181 |
+
split_offsets,
|
182 |
+
scale,
|
183 |
+
T,
|
184 |
+
HQ: tl.constexpr,
|
185 |
+
H: tl.constexpr,
|
186 |
+
K: tl.constexpr,
|
187 |
+
V: tl.constexpr,
|
188 |
+
BT: tl.constexpr,
|
189 |
+
BS: tl.constexpr,
|
190 |
+
BK: tl.constexpr,
|
191 |
+
BV: tl.constexpr,
|
192 |
+
NG: tl.constexpr,
|
193 |
+
USE_G: tl.constexpr,
|
194 |
+
USE_GK: tl.constexpr,
|
195 |
+
USE_GV: tl.constexpr,
|
196 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
197 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
198 |
+
USE_OFFSETS: tl.constexpr,
|
199 |
+
HEAD_FIRST: tl.constexpr
|
200 |
+
):
|
201 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
202 |
+
i_bg = i_nh // NG
|
203 |
+
i_n, i_hq = i_nh // HQ, i_nh % HQ
|
204 |
+
i_h = i_hq // NG
|
205 |
+
if USE_OFFSETS:
|
206 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
207 |
+
T = eos - bos
|
208 |
+
NT = tl.cdiv(T, BT)
|
209 |
+
NS = tl.cdiv(T, BS)
|
210 |
+
boh = tl.load(split_offsets + i_n).to(tl.int32)
|
211 |
+
else:
|
212 |
+
bos, eos = i_n * T, i_n * T + T
|
213 |
+
NT = tl.cdiv(T, BT)
|
214 |
+
NS = tl.cdiv(T, BS)
|
215 |
+
boh = i_n * NS
|
216 |
+
|
217 |
+
# [BK, BV]
|
218 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
219 |
+
if USE_FINAL_STATE_GRADIENT:
|
220 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
221 |
+
b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
|
222 |
+
|
223 |
+
for i_t in range(NT - 1, -1, -1):
|
224 |
+
i_s = i_t // (BS // BT)
|
225 |
+
if HEAD_FIRST:
|
226 |
+
o_dh = (i_nh * NS + i_s).to(tl.int64) * K*V
|
227 |
+
p_dh = tl.make_block_ptr(dh + o_dh, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
228 |
+
else:
|
229 |
+
o_dh = ((boh + i_s) * H + i_h).to(tl.int64) * K*V
|
230 |
+
p_dh = tl.make_block_ptr(dh + o_dh, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
231 |
+
|
232 |
+
if i_t % (BS // BT) == 0:
|
233 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
234 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
235 |
+
# [BK, BT]
|
236 |
+
if HEAD_FIRST:
|
237 |
+
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
238 |
+
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
239 |
+
else:
|
240 |
+
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
241 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
242 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
243 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
244 |
+
# [BT, BV]
|
245 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
246 |
+
|
247 |
+
if USE_G:
|
248 |
+
if HEAD_FIRST:
|
249 |
+
p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT)
|
250 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
251 |
+
b_g_last = tl.load(g + i_bg * T + last_idx)
|
252 |
+
else:
|
253 |
+
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
|
254 |
+
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
|
255 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
256 |
+
b_q = (b_q * exp(b_g)[None, :]).to(b_q.dtype)
|
257 |
+
|
258 |
+
b_dh *= exp(b_g_last)
|
259 |
+
|
260 |
+
if USE_GK:
|
261 |
+
if HEAD_FIRST:
|
262 |
+
p_gk = tl.make_block_ptr(gk + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
263 |
+
p_gk_last = gk + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
|
264 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
265 |
+
else:
|
266 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
267 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
268 |
+
|
269 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
270 |
+
b_q = (b_q * exp(b_gk)).to(b_q.dtype)
|
271 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
272 |
+
b_dh *= exp(b_gk_last)[:, None]
|
273 |
+
|
274 |
+
if USE_GV:
|
275 |
+
if HEAD_FIRST:
|
276 |
+
p_gv = tl.make_block_ptr(gv + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
277 |
+
p_gv_last = gv + (i_bg * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
|
278 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
279 |
+
else:
|
280 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
281 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
282 |
+
|
283 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
284 |
+
b_do = (b_do * exp(b_gv)).to(b_do.dtype)
|
285 |
+
|
286 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
287 |
+
b_dh *= exp(b_gv_last)[None, :]
|
288 |
+
|
289 |
+
b_dh += tl.dot(b_q, b_do)
|
290 |
+
|
291 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
292 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
293 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
294 |
+
|
295 |
+
|
296 |
+
def chunk_fwd_h(
|
297 |
+
k: torch.Tensor,
|
298 |
+
v: torch.Tensor,
|
299 |
+
g: torch.Tensor,
|
300 |
+
gk: torch.Tensor,
|
301 |
+
gv: torch.Tensor,
|
302 |
+
h0: torch.Tensor,
|
303 |
+
output_final_state: bool,
|
304 |
+
offsets: Optional[torch.Tensor] = None,
|
305 |
+
head_first: bool = True,
|
306 |
+
chunk_size: int = 64,
|
307 |
+
split_size: Optional[int] = None,
|
308 |
+
states_in_fp32: bool = False
|
309 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
310 |
+
if head_first:
|
311 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
312 |
+
else:
|
313 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
314 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
315 |
+
BS = BT if split_size is None else min(split_size, max(16, triton.next_power_of_2(T)))
|
316 |
+
assert BS % BT == 0, f"The `split_size` (got {BS}) must be a multiple of `chunk_size` {BT}"
|
317 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
318 |
+
if offsets is None:
|
319 |
+
split_offsets, N, NS = None, B, triton.cdiv(T, BS)
|
320 |
+
else:
|
321 |
+
split_offsets = prepare_chunk_offsets(offsets, BS)
|
322 |
+
N, NS = len(offsets) - 1, split_offsets[-1]
|
323 |
+
|
324 |
+
if head_first:
|
325 |
+
h = k.new_empty(B, H, NS, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
326 |
+
else:
|
327 |
+
h = k.new_empty(B, NS, H, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
328 |
+
ht = k.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None
|
329 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
|
330 |
+
chunk_fwd_kernel_h[grid](
|
331 |
+
k=k,
|
332 |
+
v=v,
|
333 |
+
h=h,
|
334 |
+
g=g,
|
335 |
+
gk=gk,
|
336 |
+
gv=gv,
|
337 |
+
h0=h0,
|
338 |
+
ht=ht,
|
339 |
+
offsets=offsets,
|
340 |
+
split_offsets=split_offsets,
|
341 |
+
T=T,
|
342 |
+
H=H,
|
343 |
+
K=K,
|
344 |
+
V=V,
|
345 |
+
BT=BT,
|
346 |
+
BS=BS,
|
347 |
+
USE_G=g is not None,
|
348 |
+
USE_GK=gk is not None,
|
349 |
+
USE_GV=gv is not None,
|
350 |
+
HEAD_FIRST=head_first
|
351 |
+
)
|
352 |
+
return h, ht
|
353 |
+
|
354 |
+
|
355 |
+
def chunk_bwd_dh(
|
356 |
+
q: torch.Tensor,
|
357 |
+
k: torch.Tensor,
|
358 |
+
v: torch.Tensor,
|
359 |
+
g: torch.Tensor,
|
360 |
+
gk: torch.Tensor,
|
361 |
+
gv: torch.Tensor,
|
362 |
+
do: torch.Tensor,
|
363 |
+
h0: torch.Tensor,
|
364 |
+
dht: torch.Tensor,
|
365 |
+
scale: float,
|
366 |
+
offsets: Optional[torch.Tensor] = None,
|
367 |
+
head_first: bool = True,
|
368 |
+
chunk_size: int = 64,
|
369 |
+
split_size: Optional[int] = None,
|
370 |
+
states_in_fp32: bool = False
|
371 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
372 |
+
if head_first:
|
373 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
374 |
+
HQ = q.shape[1]
|
375 |
+
else:
|
376 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
377 |
+
HQ = q.shape[2]
|
378 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
379 |
+
BS = BT if split_size is None else min(split_size, max(16, triton.next_power_of_2(T)))
|
380 |
+
assert BS % BT == 0, f"The `split_size` (got {BS}) must be a multiple of `chunk_size` {BT}"
|
381 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
382 |
+
# NG: number of groups in GQA
|
383 |
+
if offsets is None:
|
384 |
+
split_offsets, N, NS = None, B, triton.cdiv(T, BS)
|
385 |
+
else:
|
386 |
+
split_offsets = prepare_chunk_offsets(offsets, BS)
|
387 |
+
N, NS = len(offsets) - 1, split_offsets[-1]
|
388 |
+
NG = HQ // H
|
389 |
+
|
390 |
+
if head_first:
|
391 |
+
dh = k.new_empty(B, HQ, NS, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
392 |
+
else:
|
393 |
+
dh = k.new_empty(B, NS, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
394 |
+
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None
|
395 |
+
|
396 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
|
397 |
+
chunk_bwd_kernel_dh[grid](
|
398 |
+
q=q,
|
399 |
+
g=g,
|
400 |
+
gk=gk,
|
401 |
+
gv=gv,
|
402 |
+
do=do,
|
403 |
+
dh=dh,
|
404 |
+
dht=dht,
|
405 |
+
dh0=dh0,
|
406 |
+
offsets=offsets,
|
407 |
+
split_offsets=split_offsets,
|
408 |
+
scale=scale,
|
409 |
+
T=T,
|
410 |
+
HQ=HQ,
|
411 |
+
H=H,
|
412 |
+
K=K,
|
413 |
+
V=V,
|
414 |
+
BT=BT,
|
415 |
+
BS=BS,
|
416 |
+
NG=NG,
|
417 |
+
USE_G=g is not None,
|
418 |
+
USE_GK=gk is not None,
|
419 |
+
USE_GV=gv is not None,
|
420 |
+
HEAD_FIRST=head_first
|
421 |
+
)
|
422 |
+
return dh, dh0
|
fla/ops/common/chunk_h_parallel.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
Fully parallelized state passing.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import triton
|
12 |
+
import triton.language as tl
|
13 |
+
|
14 |
+
from fla.ops.utils.op import exp
|
15 |
+
|
16 |
+
|
17 |
+
@triton.heuristics({
|
18 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
19 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
20 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
21 |
+
})
|
22 |
+
@triton.autotune(
|
23 |
+
configs=[
|
24 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
25 |
+
for BK in [32, 64, 128]
|
26 |
+
for BV in [32, 64, 128]
|
27 |
+
for num_warps in [2, 4, 8]
|
28 |
+
for num_stages in [2, 3, 4]
|
29 |
+
],
|
30 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
31 |
+
)
|
32 |
+
@triton.jit(do_not_specialize=['T'])
|
33 |
+
def chunk_fwd_kernel_h_parallel(
|
34 |
+
k,
|
35 |
+
v,
|
36 |
+
h,
|
37 |
+
g,
|
38 |
+
gk,
|
39 |
+
gv,
|
40 |
+
h0,
|
41 |
+
ht,
|
42 |
+
offsets,
|
43 |
+
indices,
|
44 |
+
T,
|
45 |
+
H: tl.constexpr,
|
46 |
+
K: tl.constexpr,
|
47 |
+
V: tl.constexpr,
|
48 |
+
BT: tl.constexpr,
|
49 |
+
BK: tl.constexpr,
|
50 |
+
BV: tl.constexpr,
|
51 |
+
USE_G: tl.constexpr,
|
52 |
+
USE_GK: tl.constexpr,
|
53 |
+
USE_GV: tl.constexpr,
|
54 |
+
USE_INITIAL_STATE: tl.constexpr,
|
55 |
+
STORE_FINAL_STATE: tl.constexpr,
|
56 |
+
USE_OFFSETS: tl.constexpr,
|
57 |
+
HEAD_FIRST: tl.constexpr
|
58 |
+
):
|
59 |
+
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
60 |
+
|
61 |
+
NV = tl.cdiv(V, BV)
|
62 |
+
# i_b: batch index
|
63 |
+
# i_h: head index
|
64 |
+
# i_n: sequence index
|
65 |
+
# i_t: chunk index within current sequence
|
66 |
+
# i_tg: (global) chunk index across all sequences
|
67 |
+
i_k, i_v = i_kv // NV, i_kv % NV
|
68 |
+
i_b, i_h = i_bh // H, i_bh % H
|
69 |
+
if USE_OFFSETS:
|
70 |
+
i_tg = i_t
|
71 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
72 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
73 |
+
T = eos - bos
|
74 |
+
NT = tl.cdiv(T, BT)
|
75 |
+
else:
|
76 |
+
bos, eos = i_b * T, i_b * T + T
|
77 |
+
NT = tl.cdiv(T, BT)
|
78 |
+
i_n, i_tg = i_b, i_b * NT + i_t
|
79 |
+
i_nh = i_n * H + i_h
|
80 |
+
|
81 |
+
if HEAD_FIRST:
|
82 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
83 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
84 |
+
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
85 |
+
else:
|
86 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
87 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
88 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
89 |
+
|
90 |
+
if i_t == 0:
|
91 |
+
if USE_INITIAL_STATE:
|
92 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
93 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
94 |
+
else:
|
95 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
96 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
97 |
+
|
98 |
+
# [BK, BT]
|
99 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
100 |
+
# [BT, BV]
|
101 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
102 |
+
|
103 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
104 |
+
# scalar decay
|
105 |
+
if USE_G:
|
106 |
+
if HEAD_FIRST:
|
107 |
+
b_g_last = tl.load(g + i_bh * T + last_idx)
|
108 |
+
p_g = g + i_bh * T + i_t * BT + tl.arange(0, BT)
|
109 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
110 |
+
else:
|
111 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
112 |
+
p_g = g + bos*H + (i_t * BT + tl.arange(0, BT)) * H + i_h
|
113 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
114 |
+
b_v = (b_v * exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
|
115 |
+
|
116 |
+
# vector decay, h = Diag(gk) @ h
|
117 |
+
if USE_GK:
|
118 |
+
if HEAD_FIRST:
|
119 |
+
p_gk = tl.make_block_ptr(gk + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
120 |
+
p_gk_last = gk + i_bh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
121 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
122 |
+
else:
|
123 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
124 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
125 |
+
|
126 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
127 |
+
|
128 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
129 |
+
b_k = (b_k * exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
|
130 |
+
|
131 |
+
# vector decay, h = h @ Diag(gv)
|
132 |
+
if USE_GV:
|
133 |
+
if HEAD_FIRST:
|
134 |
+
p_gv = tl.make_block_ptr(gv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
135 |
+
p_gv_last = gv + i_bh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
136 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
137 |
+
else:
|
138 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
139 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
140 |
+
|
141 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
142 |
+
|
143 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
144 |
+
b_v = (b_v * exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
|
145 |
+
|
146 |
+
b_h = tl.dot(b_k, b_v)
|
147 |
+
if i_t < NT - 1:
|
148 |
+
if HEAD_FIRST:
|
149 |
+
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t + 1) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
150 |
+
else:
|
151 |
+
p_h = tl.make_block_ptr(h + ((i_tg + 1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
152 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
153 |
+
elif STORE_FINAL_STATE:
|
154 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
155 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
156 |
+
|
157 |
+
|
158 |
+
@triton.heuristics({
|
159 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
160 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
161 |
+
})
|
162 |
+
@triton.autotune(
|
163 |
+
configs=[
|
164 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
165 |
+
for BK in [32, 64, 128]
|
166 |
+
for BV in [32, 64, 128]
|
167 |
+
for num_warps in [2, 4, 8, 16]
|
168 |
+
for num_stages in [2, 3]
|
169 |
+
],
|
170 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
171 |
+
)
|
172 |
+
@triton.jit(do_not_specialize=['T'])
|
173 |
+
def chunk_fwd_kernel_h_reduction(
|
174 |
+
h,
|
175 |
+
g,
|
176 |
+
gk,
|
177 |
+
gv,
|
178 |
+
kvt,
|
179 |
+
ht,
|
180 |
+
offsets,
|
181 |
+
chunk_offsets,
|
182 |
+
T,
|
183 |
+
H: tl.constexpr,
|
184 |
+
K: tl.constexpr,
|
185 |
+
V: tl.constexpr,
|
186 |
+
BT: tl.constexpr,
|
187 |
+
BK: tl.constexpr,
|
188 |
+
BV: tl.constexpr,
|
189 |
+
USE_G: tl.constexpr,
|
190 |
+
USE_GK: tl.constexpr,
|
191 |
+
USE_GV: tl.constexpr,
|
192 |
+
STORE_FINAL_STATE: tl.constexpr,
|
193 |
+
USE_OFFSETS: tl.constexpr,
|
194 |
+
HEAD_FIRST: tl.constexpr
|
195 |
+
):
|
196 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
197 |
+
i_n, i_h = i_nh // H, i_nh % H
|
198 |
+
if USE_OFFSETS:
|
199 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
200 |
+
T = eos - bos
|
201 |
+
NT = tl.cdiv(T, BT)
|
202 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
203 |
+
else:
|
204 |
+
bos, eos = i_n * T, i_n * T + T
|
205 |
+
NT = tl.cdiv(T, BT)
|
206 |
+
boh = i_n * NT
|
207 |
+
|
208 |
+
# [BK, BV]
|
209 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
210 |
+
for i_t in range(NT):
|
211 |
+
if HEAD_FIRST:
|
212 |
+
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
213 |
+
else:
|
214 |
+
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
215 |
+
b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
216 |
+
if i_t > 0:
|
217 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
218 |
+
|
219 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
220 |
+
# scalar decay
|
221 |
+
if USE_G:
|
222 |
+
if HEAD_FIRST:
|
223 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
224 |
+
else:
|
225 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
226 |
+
b_h *= exp(b_g_last)
|
227 |
+
|
228 |
+
# vector decay, h = Diag(gk) @ h
|
229 |
+
if USE_GK:
|
230 |
+
if HEAD_FIRST:
|
231 |
+
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
232 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
233 |
+
else:
|
234 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
235 |
+
|
236 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
237 |
+
b_h *= exp(b_gk_last)[:, None]
|
238 |
+
|
239 |
+
# vector decay, h = h @ Diag(gv)
|
240 |
+
if USE_GV:
|
241 |
+
if HEAD_FIRST:
|
242 |
+
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
243 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
244 |
+
else:
|
245 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
246 |
+
|
247 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
248 |
+
b_h *= exp(b_gv_last)[None, :]
|
249 |
+
|
250 |
+
if STORE_FINAL_STATE:
|
251 |
+
p_kvt = tl.make_block_ptr(kvt + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
252 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
253 |
+
b_h += tl.load(p_kvt, boundary_check=(0, 1)).to(tl.float32)
|
254 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
255 |
+
|
256 |
+
|
257 |
+
@triton.heuristics({
|
258 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
259 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
260 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
261 |
+
})
|
262 |
+
@triton.autotune(
|
263 |
+
configs=[
|
264 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
265 |
+
for BK in [32, 64, 128]
|
266 |
+
for BV in [32, 64, 128]
|
267 |
+
for num_warps in [2, 4, 8]
|
268 |
+
for num_stages in [2, 3, 4]
|
269 |
+
],
|
270 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
271 |
+
)
|
272 |
+
@triton.jit(do_not_specialize=['T'])
|
273 |
+
def chunk_bwd_kernel_dh_parallel(
|
274 |
+
q,
|
275 |
+
g,
|
276 |
+
gk,
|
277 |
+
gv,
|
278 |
+
do,
|
279 |
+
dh,
|
280 |
+
dht,
|
281 |
+
dh0,
|
282 |
+
offsets,
|
283 |
+
indices,
|
284 |
+
scale,
|
285 |
+
T,
|
286 |
+
HQ: tl.constexpr,
|
287 |
+
H: tl.constexpr,
|
288 |
+
K: tl.constexpr,
|
289 |
+
V: tl.constexpr,
|
290 |
+
BT: tl.constexpr,
|
291 |
+
BK: tl.constexpr,
|
292 |
+
BV: tl.constexpr,
|
293 |
+
NG: tl.constexpr,
|
294 |
+
USE_G: tl.constexpr,
|
295 |
+
USE_GK: tl.constexpr,
|
296 |
+
USE_GV: tl.constexpr,
|
297 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
298 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
299 |
+
USE_OFFSETS: tl.constexpr,
|
300 |
+
HEAD_FIRST: tl.constexpr
|
301 |
+
):
|
302 |
+
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
303 |
+
|
304 |
+
NV = tl.cdiv(V, BV)
|
305 |
+
i_k, i_v = i_kv // NV, i_kv % NV
|
306 |
+
i_b, i_hq, i_bg = i_bh // HQ, i_bh % HQ, i_bh // NG
|
307 |
+
i_h = i_hq // NG
|
308 |
+
if USE_OFFSETS:
|
309 |
+
i_tg = i_t
|
310 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
311 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
312 |
+
T = eos - bos
|
313 |
+
NT = tl.cdiv(T, BT)
|
314 |
+
else:
|
315 |
+
bos, eos = i_b * T, i_b * T + T
|
316 |
+
NT = tl.cdiv(T, BT)
|
317 |
+
i_n, i_tg = i_b, i_b * NT + i_t
|
318 |
+
i_nh = i_n * HQ + i_hq
|
319 |
+
|
320 |
+
if HEAD_FIRST:
|
321 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
322 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
323 |
+
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
324 |
+
else:
|
325 |
+
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
326 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
327 |
+
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
328 |
+
|
329 |
+
if i_t == NT - 1:
|
330 |
+
if USE_FINAL_STATE_GRADIENT:
|
331 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
332 |
+
b_dh = tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
|
333 |
+
else:
|
334 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
335 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
336 |
+
|
337 |
+
# [BK, BT]
|
338 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
339 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
340 |
+
# [BT, BV]
|
341 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
342 |
+
|
343 |
+
if USE_G:
|
344 |
+
if HEAD_FIRST:
|
345 |
+
p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT)
|
346 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
347 |
+
else:
|
348 |
+
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
|
349 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
350 |
+
b_q = (b_q * exp(b_g)[None, :]).to(b_q.dtype)
|
351 |
+
|
352 |
+
if USE_GK:
|
353 |
+
if HEAD_FIRST:
|
354 |
+
p_gk = tl.make_block_ptr(gk + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
355 |
+
else:
|
356 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
357 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
358 |
+
b_q = (b_q * exp(b_gk)).to(b_q.dtype)
|
359 |
+
|
360 |
+
if USE_GV:
|
361 |
+
if HEAD_FIRST:
|
362 |
+
p_gv = tl.make_block_ptr(gv + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
363 |
+
else:
|
364 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
365 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
366 |
+
b_do = (b_do * exp(b_gv)).to(b_do.dtype)
|
367 |
+
|
368 |
+
b_dh = tl.dot(b_q, b_do)
|
369 |
+
if i_t > 0:
|
370 |
+
if HEAD_FIRST:
|
371 |
+
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t - 1) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
372 |
+
else:
|
373 |
+
p_dh = tl.make_block_ptr(dh + ((i_tg - 1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
374 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
375 |
+
elif STORE_INITIAL_STATE_GRADIENT:
|
376 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
377 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
378 |
+
|
379 |
+
|
380 |
+
@triton.heuristics({
|
381 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
382 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
383 |
+
})
|
384 |
+
@triton.autotune(
|
385 |
+
configs=[
|
386 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
387 |
+
for BK in [32, 64, 128]
|
388 |
+
for BV in [32, 64, 128]
|
389 |
+
for num_warps in [2, 4, 8, 16]
|
390 |
+
for num_stages in [2, 3]
|
391 |
+
],
|
392 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
393 |
+
)
|
394 |
+
@triton.jit(do_not_specialize=['T'])
|
395 |
+
def chunk_bwd_kernel_dh_reduction(
|
396 |
+
g,
|
397 |
+
gk,
|
398 |
+
gv,
|
399 |
+
dh,
|
400 |
+
doq0,
|
401 |
+
dh0,
|
402 |
+
offsets,
|
403 |
+
chunk_offsets,
|
404 |
+
T,
|
405 |
+
HQ: tl.constexpr,
|
406 |
+
H: tl.constexpr,
|
407 |
+
K: tl.constexpr,
|
408 |
+
V: tl.constexpr,
|
409 |
+
BT: tl.constexpr,
|
410 |
+
BK: tl.constexpr,
|
411 |
+
BV: tl.constexpr,
|
412 |
+
NG: tl.constexpr,
|
413 |
+
USE_G: tl.constexpr,
|
414 |
+
USE_GK: tl.constexpr,
|
415 |
+
USE_GV: tl.constexpr,
|
416 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
417 |
+
USE_OFFSETS: tl.constexpr,
|
418 |
+
HEAD_FIRST: tl.constexpr
|
419 |
+
):
|
420 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
421 |
+
i_bg = i_nh // NG
|
422 |
+
i_n, i_hq = i_nh // HQ, i_nh % HQ
|
423 |
+
i_h = i_hq // NG
|
424 |
+
if USE_OFFSETS:
|
425 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
426 |
+
T = eos - bos
|
427 |
+
NT = tl.cdiv(T, BT)
|
428 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
429 |
+
else:
|
430 |
+
bos, eos = i_n * T, i_n * T + T
|
431 |
+
NT = tl.cdiv(T, BT)
|
432 |
+
boh = i_n * NT
|
433 |
+
|
434 |
+
# [BK, BV]
|
435 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
436 |
+
for i_t in range(NT - 1, -1, -1):
|
437 |
+
if HEAD_FIRST:
|
438 |
+
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
439 |
+
else:
|
440 |
+
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
441 |
+
b_dh += tl.load(p_dh, boundary_check=(0, 1)).to(tl.float32)
|
442 |
+
if i_t < NT - 1:
|
443 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
444 |
+
|
445 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
446 |
+
if USE_G:
|
447 |
+
if HEAD_FIRST:
|
448 |
+
b_g_last = tl.load(g + i_bg * T + last_idx)
|
449 |
+
else:
|
450 |
+
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
|
451 |
+
b_dh *= exp(b_g_last)
|
452 |
+
|
453 |
+
if USE_GK:
|
454 |
+
if HEAD_FIRST:
|
455 |
+
p_gk_last = gk + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
|
456 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
457 |
+
else:
|
458 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
459 |
+
|
460 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
461 |
+
b_dh *= exp(b_gk_last)[:, None]
|
462 |
+
|
463 |
+
if USE_GV:
|
464 |
+
if HEAD_FIRST:
|
465 |
+
p_gv_last = gv + (i_bg * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
|
466 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
467 |
+
else:
|
468 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
469 |
+
|
470 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
471 |
+
b_dh *= exp(b_gv_last)[None, :]
|
472 |
+
|
473 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
474 |
+
p_doq0 = tl.make_block_ptr(doq0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
475 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
476 |
+
b_dh += tl.load(p_doq0, boundary_check=(0, 1)).to(tl.float32)
|
477 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
478 |
+
|
479 |
+
|
480 |
+
def chunk_fwd_h(
|
481 |
+
k: torch.Tensor,
|
482 |
+
v: torch.Tensor,
|
483 |
+
g: torch.Tensor,
|
484 |
+
gk: torch.Tensor,
|
485 |
+
gv: torch.Tensor,
|
486 |
+
h0: torch.Tensor,
|
487 |
+
output_final_state: bool,
|
488 |
+
states_in_fp32: bool = False,
|
489 |
+
offsets: Optional[torch.Tensor] = None,
|
490 |
+
indices: Optional[torch.Tensor] = None,
|
491 |
+
head_first: bool = True,
|
492 |
+
chunk_size: int = 64
|
493 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
494 |
+
if head_first:
|
495 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
496 |
+
else:
|
497 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
498 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
499 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
500 |
+
if offsets is None:
|
501 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
502 |
+
else:
|
503 |
+
if indices is None:
|
504 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()])
|
505 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
506 |
+
N, NT = len(offsets) - 1, len(indices)
|
507 |
+
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
|
508 |
+
|
509 |
+
h = k.new_empty(B, H, NT, K, V, dtype=torch.float) if head_first else k.new_empty(B, NT, H, K, V, dtype=torch.float)
|
510 |
+
ht = k.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None
|
511 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']) * triton.cdiv(V, meta['BV']), NT, B * H)
|
512 |
+
chunk_fwd_kernel_h_parallel[grid](
|
513 |
+
k=k,
|
514 |
+
v=v,
|
515 |
+
h=h,
|
516 |
+
g=g,
|
517 |
+
gk=gk,
|
518 |
+
gv=gv,
|
519 |
+
h0=h0,
|
520 |
+
ht=ht,
|
521 |
+
offsets=offsets,
|
522 |
+
indices=indices,
|
523 |
+
T=T,
|
524 |
+
H=H,
|
525 |
+
K=K,
|
526 |
+
V=V,
|
527 |
+
BT=BT,
|
528 |
+
USE_G=g is not None,
|
529 |
+
USE_GK=gk is not None,
|
530 |
+
USE_GV=gv is not None,
|
531 |
+
HEAD_FIRST=head_first
|
532 |
+
)
|
533 |
+
kvt, ht = ht, (torch.empty_like(ht) if output_final_state else None)
|
534 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
|
535 |
+
chunk_fwd_kernel_h_reduction[grid](
|
536 |
+
h=h,
|
537 |
+
g=g,
|
538 |
+
gk=gk,
|
539 |
+
gv=gv,
|
540 |
+
kvt=kvt,
|
541 |
+
ht=ht,
|
542 |
+
offsets=offsets,
|
543 |
+
chunk_offsets=chunk_offsets,
|
544 |
+
T=T,
|
545 |
+
H=H,
|
546 |
+
K=K,
|
547 |
+
V=V,
|
548 |
+
BT=BT,
|
549 |
+
USE_G=g is not None,
|
550 |
+
USE_GK=gk is not None,
|
551 |
+
USE_GV=gv is not None,
|
552 |
+
HEAD_FIRST=head_first
|
553 |
+
)
|
554 |
+
h = h.to(k.dtype) if not states_in_fp32 else h
|
555 |
+
return h, ht
|
556 |
+
|
557 |
+
|
558 |
+
def chunk_bwd_dh(
|
559 |
+
q: torch.Tensor,
|
560 |
+
k: torch.Tensor,
|
561 |
+
v: torch.Tensor,
|
562 |
+
g: torch.Tensor,
|
563 |
+
gk: torch.Tensor,
|
564 |
+
gv: torch.Tensor,
|
565 |
+
do: torch.Tensor,
|
566 |
+
h0: torch.Tensor,
|
567 |
+
dht: torch.Tensor,
|
568 |
+
scale: float,
|
569 |
+
states_in_fp32: bool = False,
|
570 |
+
offsets: Optional[torch.Tensor] = None,
|
571 |
+
indices: Optional[torch.Tensor] = None,
|
572 |
+
head_first: bool = True,
|
573 |
+
chunk_size: int = 64
|
574 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
575 |
+
if head_first:
|
576 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
577 |
+
HQ = q.shape[1]
|
578 |
+
else:
|
579 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
580 |
+
HQ = q.shape[2]
|
581 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
582 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
583 |
+
# NG: number of groups in GQA
|
584 |
+
if offsets is None:
|
585 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
586 |
+
else:
|
587 |
+
if indices is None:
|
588 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()])
|
589 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
590 |
+
N, NT = len(offsets) - 1, len(indices)
|
591 |
+
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
|
592 |
+
NG = HQ // H
|
593 |
+
|
594 |
+
if head_first:
|
595 |
+
dh = k.new_empty(B, HQ, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
596 |
+
else:
|
597 |
+
dh = k.new_empty(B, NT, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
598 |
+
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None
|
599 |
+
|
600 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']) * triton.cdiv(V, meta['BV']), NT, B * HQ)
|
601 |
+
chunk_bwd_kernel_dh_parallel[grid](
|
602 |
+
q=q,
|
603 |
+
g=g,
|
604 |
+
gk=gk,
|
605 |
+
gv=gv,
|
606 |
+
do=do,
|
607 |
+
dh=dh,
|
608 |
+
dht=dht,
|
609 |
+
dh0=dh0,
|
610 |
+
offsets=offsets,
|
611 |
+
indices=indices,
|
612 |
+
scale=scale,
|
613 |
+
T=T,
|
614 |
+
HQ=HQ,
|
615 |
+
H=H,
|
616 |
+
K=K,
|
617 |
+
V=V,
|
618 |
+
BT=BT,
|
619 |
+
NG=NG,
|
620 |
+
USE_G=g is not None,
|
621 |
+
USE_GK=gk is not None,
|
622 |
+
USE_GV=gv is not None,
|
623 |
+
HEAD_FIRST=head_first
|
624 |
+
)
|
625 |
+
|
626 |
+
doq0, dh0 = dh0, (torch.empty_like(dh0) if dh0 is not None else None)
|
627 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * HQ)
|
628 |
+
chunk_bwd_kernel_dh_reduction[grid](
|
629 |
+
g=g,
|
630 |
+
gk=gk,
|
631 |
+
gv=gv,
|
632 |
+
dh=dh,
|
633 |
+
doq0=doq0,
|
634 |
+
dh0=dh0,
|
635 |
+
offsets=offsets,
|
636 |
+
chunk_offsets=chunk_offsets,
|
637 |
+
T=T,
|
638 |
+
HQ=HQ,
|
639 |
+
H=H,
|
640 |
+
K=K,
|
641 |
+
V=V,
|
642 |
+
BT=BT,
|
643 |
+
NG=NG,
|
644 |
+
USE_G=g is not None,
|
645 |
+
USE_GK=gk is not None,
|
646 |
+
USE_GV=gv is not None,
|
647 |
+
HEAD_FIRST=head_first
|
648 |
+
)
|
649 |
+
dh = dh.to(q.dtype) if not states_in_fp32 else dh
|
650 |
+
return dh, dh0
|
fla/ops/common/chunk_h_split.py
ADDED
@@ -0,0 +1,677 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils.op import exp
|
11 |
+
|
12 |
+
|
13 |
+
@triton.heuristics({
|
14 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
15 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
16 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
17 |
+
})
|
18 |
+
@triton.autotune(
|
19 |
+
configs=[
|
20 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
21 |
+
for BK in [32, 64]
|
22 |
+
for BV in [32, 64]
|
23 |
+
for num_warps in [2, 4, 8]
|
24 |
+
for num_stages in [2, 3]
|
25 |
+
],
|
26 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV'],
|
27 |
+
)
|
28 |
+
@triton.jit(do_not_specialize=['T'])
|
29 |
+
def chunk_fwd_kernel_h_split(
|
30 |
+
k,
|
31 |
+
v,
|
32 |
+
g,
|
33 |
+
gk,
|
34 |
+
gv,
|
35 |
+
hs,
|
36 |
+
hr,
|
37 |
+
h0,
|
38 |
+
ht,
|
39 |
+
offsets,
|
40 |
+
split_indices,
|
41 |
+
T,
|
42 |
+
S: tl.constexpr,
|
43 |
+
H: tl.constexpr,
|
44 |
+
K: tl.constexpr,
|
45 |
+
V: tl.constexpr,
|
46 |
+
BT: tl.constexpr,
|
47 |
+
BK: tl.constexpr,
|
48 |
+
BV: tl.constexpr,
|
49 |
+
USE_G: tl.constexpr,
|
50 |
+
USE_GK: tl.constexpr,
|
51 |
+
USE_GV: tl.constexpr,
|
52 |
+
USE_INITIAL_STATE: tl.constexpr,
|
53 |
+
STORE_FINAL_STATE: tl.constexpr,
|
54 |
+
USE_OFFSETS: tl.constexpr,
|
55 |
+
HEAD_FIRST: tl.constexpr
|
56 |
+
):
|
57 |
+
# handle one split at a time
|
58 |
+
# i_h: head index
|
59 |
+
# i_n: sequence index
|
60 |
+
# i_s: local split index inside a sequence
|
61 |
+
i_k, i_v, i_sh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
62 |
+
i_ss, i_h = i_sh // H, i_sh % H
|
63 |
+
if USE_OFFSETS:
|
64 |
+
i_n, i_s = tl.load(split_indices + i_ss * 2).to(tl.int32), tl.load(split_indices + i_ss * 2 + 1).to(tl.int32)
|
65 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
66 |
+
T = eos - bos
|
67 |
+
NS = tl.cdiv(T, S)
|
68 |
+
else:
|
69 |
+
NS = tl.cdiv(T, S)
|
70 |
+
i_n, i_s = i_ss // NS, i_ss % NS
|
71 |
+
bos, eos = i_n * T, i_n * T + T
|
72 |
+
i_nh = i_n * H + i_h
|
73 |
+
|
74 |
+
# [BK, BV]
|
75 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
76 |
+
# for the first split, we directly store the state as the final result
|
77 |
+
if i_s == 0:
|
78 |
+
if USE_INITIAL_STATE:
|
79 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
80 |
+
b_h += tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
81 |
+
p_hr = tl.make_block_ptr(hr + i_sh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
82 |
+
tl.store(p_hr, b_h.to(p_hr.dtype.element_ty), boundary_check=(0, 1))
|
83 |
+
for i_t in range(tl.cdiv(i_s * S, BT), tl.cdiv(min(i_s * S + S, T), BT)):
|
84 |
+
if HEAD_FIRST:
|
85 |
+
p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
86 |
+
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
87 |
+
else:
|
88 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
89 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
90 |
+
# [BK, BT]
|
91 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
92 |
+
# [BT, BV]
|
93 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
94 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
95 |
+
|
96 |
+
# scalar decay
|
97 |
+
if USE_G:
|
98 |
+
if HEAD_FIRST:
|
99 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
100 |
+
p_g = g + i_nh * T + i_t * BT + tl.arange(0, BT)
|
101 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
102 |
+
else:
|
103 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
104 |
+
p_g = g + bos*H + (i_t * BT + tl.arange(0, BT)) * H + i_h
|
105 |
+
b_h *= exp(b_g_last)
|
106 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
107 |
+
b_v = (b_v * exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
|
108 |
+
|
109 |
+
# vector decay, h = Diag(gk) @ h
|
110 |
+
if USE_GK:
|
111 |
+
if HEAD_FIRST:
|
112 |
+
p_gk = tl.make_block_ptr(gk + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
113 |
+
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
114 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
115 |
+
else:
|
116 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
117 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
118 |
+
|
119 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
120 |
+
b_h *= exp(b_gk_last)[:, None]
|
121 |
+
|
122 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
123 |
+
b_k = (b_k * exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
|
124 |
+
|
125 |
+
# vector decay, h = h @ Diag(gv)
|
126 |
+
if USE_GV:
|
127 |
+
if HEAD_FIRST:
|
128 |
+
p_gv = tl.make_block_ptr(gv + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
129 |
+
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
130 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
131 |
+
else:
|
132 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
133 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
134 |
+
|
135 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
136 |
+
b_h *= exp(b_gv_last)[None, :]
|
137 |
+
|
138 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
139 |
+
b_v = (b_v * exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
|
140 |
+
|
141 |
+
b_h += tl.dot(b_k, b_v)
|
142 |
+
|
143 |
+
# if there are more than one splits, we store the result to (unreduced) hs
|
144 |
+
# otherwise, we store the result to ht as the final state
|
145 |
+
if NS > 1:
|
146 |
+
p_hs = tl.make_block_ptr(hs + i_sh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
147 |
+
tl.store(p_hs, b_h.to(p_hs.dtype.element_ty), boundary_check=(0, 1))
|
148 |
+
elif STORE_FINAL_STATE:
|
149 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
150 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
151 |
+
|
152 |
+
|
153 |
+
@triton.heuristics({
|
154 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
155 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
156 |
+
})
|
157 |
+
@triton.autotune(
|
158 |
+
configs=[
|
159 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
160 |
+
for BK in [32, 64]
|
161 |
+
for BV in [32, 64]
|
162 |
+
for num_warps in [2, 4, 8]
|
163 |
+
for num_stages in [2, 3, 4]
|
164 |
+
],
|
165 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV'],
|
166 |
+
)
|
167 |
+
@triton.jit(do_not_specialize=['T'])
|
168 |
+
def chunk_fwd_kernel_h_reduction(
|
169 |
+
g,
|
170 |
+
gk,
|
171 |
+
gv,
|
172 |
+
hs,
|
173 |
+
hr,
|
174 |
+
ht,
|
175 |
+
offsets,
|
176 |
+
split_offsets,
|
177 |
+
T,
|
178 |
+
S: tl.constexpr,
|
179 |
+
H: tl.constexpr,
|
180 |
+
K: tl.constexpr,
|
181 |
+
V: tl.constexpr,
|
182 |
+
BT: tl.constexpr,
|
183 |
+
BK: tl.constexpr,
|
184 |
+
BV: tl.constexpr,
|
185 |
+
USE_G: tl.constexpr,
|
186 |
+
USE_GK: tl.constexpr,
|
187 |
+
USE_GV: tl.constexpr,
|
188 |
+
STORE_FINAL_STATE: tl.constexpr,
|
189 |
+
USE_OFFSETS: tl.constexpr,
|
190 |
+
HEAD_FIRST: tl.constexpr
|
191 |
+
):
|
192 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
193 |
+
i_n, i_h = i_nh // H, i_nh % H
|
194 |
+
if USE_OFFSETS:
|
195 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
196 |
+
T = eos - bos
|
197 |
+
NS = tl.cdiv(T, S)
|
198 |
+
boh = tl.load(split_offsets + i_n).to(tl.int32)
|
199 |
+
else:
|
200 |
+
bos, eos = i_n * T, i_n * T + T
|
201 |
+
NS = tl.cdiv(T, S)
|
202 |
+
boh = i_n * NS
|
203 |
+
|
204 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
205 |
+
# skip the first split
|
206 |
+
for i_s in range(1, NS):
|
207 |
+
p_hs = tl.make_block_ptr(hs + ((boh + i_s-1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
208 |
+
p_hr = tl.make_block_ptr(hr + ((boh + i_s) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
209 |
+
b_h += tl.load(p_hs, boundary_check=(0, 1)).to(tl.float32)
|
210 |
+
tl.store(p_hr, b_h.to(p_hr.dtype.element_ty), boundary_check=(0, 1))
|
211 |
+
|
212 |
+
for i_t in range(tl.cdiv(i_s * S, BT), tl.cdiv(min(i_s * S + S, T), BT)):
|
213 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
214 |
+
# scalar decay
|
215 |
+
if USE_G:
|
216 |
+
if HEAD_FIRST:
|
217 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
218 |
+
else:
|
219 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
220 |
+
b_h *= exp(b_g_last)
|
221 |
+
|
222 |
+
# vector decay, h = Diag(gk) @ h
|
223 |
+
if USE_GK:
|
224 |
+
if HEAD_FIRST:
|
225 |
+
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
226 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
227 |
+
else:
|
228 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
229 |
+
|
230 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
231 |
+
b_h *= exp(b_gk_last)[:, None]
|
232 |
+
|
233 |
+
# vector decay, h = h @ Diag(gv)
|
234 |
+
if USE_GV:
|
235 |
+
if HEAD_FIRST:
|
236 |
+
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
237 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
238 |
+
else:
|
239 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
240 |
+
|
241 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
242 |
+
b_h *= exp(b_gv_last)[None, :]
|
243 |
+
|
244 |
+
if NS > 1:
|
245 |
+
if STORE_FINAL_STATE:
|
246 |
+
p_hs = tl.make_block_ptr(hs + ((boh + NS-1) * H + i_h)*K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
247 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
248 |
+
b_h += tl.load(p_hs, boundary_check=(0, 1)).to(tl.float32)
|
249 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
250 |
+
|
251 |
+
|
252 |
+
@triton.heuristics({
|
253 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
254 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
255 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
256 |
+
})
|
257 |
+
@triton.autotune(
|
258 |
+
configs=[
|
259 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
260 |
+
for BK in [32, 64]
|
261 |
+
for BV in [32, 64]
|
262 |
+
for num_warps in [2, 4, 8]
|
263 |
+
for num_stages in [2, 3]
|
264 |
+
],
|
265 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV'],
|
266 |
+
)
|
267 |
+
@triton.jit(do_not_specialize=['T'])
|
268 |
+
def chunk_bwd_kernel_dh_split(
|
269 |
+
q,
|
270 |
+
g,
|
271 |
+
gk,
|
272 |
+
gv,
|
273 |
+
do,
|
274 |
+
dht,
|
275 |
+
dhs,
|
276 |
+
dhr,
|
277 |
+
dh0,
|
278 |
+
offsets,
|
279 |
+
split_indices,
|
280 |
+
scale,
|
281 |
+
T,
|
282 |
+
S: tl.constexpr,
|
283 |
+
HQ: tl.constexpr,
|
284 |
+
H: tl.constexpr,
|
285 |
+
K: tl.constexpr,
|
286 |
+
V: tl.constexpr,
|
287 |
+
BT: tl.constexpr,
|
288 |
+
BK: tl.constexpr,
|
289 |
+
BV: tl.constexpr,
|
290 |
+
NG: tl.constexpr,
|
291 |
+
USE_G: tl.constexpr,
|
292 |
+
USE_GK: tl.constexpr,
|
293 |
+
USE_GV: tl.constexpr,
|
294 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
295 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
296 |
+
USE_OFFSETS: tl.constexpr,
|
297 |
+
HEAD_FIRST: tl.constexpr
|
298 |
+
):
|
299 |
+
# handle one split at a time
|
300 |
+
# i_h: head index
|
301 |
+
# i_n: sequence index
|
302 |
+
# i_s: local split index inside a sequence
|
303 |
+
i_k, i_v, i_sh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
304 |
+
i_ss, i_hq = i_sh // HQ, i_sh % HQ
|
305 |
+
if USE_OFFSETS:
|
306 |
+
i_n, i_s = tl.load(split_indices + i_ss * 2).to(tl.int32), tl.load(split_indices + i_ss * 2 + 1).to(tl.int32)
|
307 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
308 |
+
T = eos - bos
|
309 |
+
NS = tl.cdiv(T, S)
|
310 |
+
else:
|
311 |
+
NS = tl.cdiv(T, S)
|
312 |
+
i_n, i_s = i_ss // NS, i_ss % NS
|
313 |
+
bos, eos = i_n * T, i_n * T + T
|
314 |
+
i_nh = i_n * HQ + i_hq
|
315 |
+
i_ng, i_h = i_nh // NG, i_hq // NG
|
316 |
+
|
317 |
+
# [BK, BV]
|
318 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
319 |
+
if i_s == NS - 1:
|
320 |
+
if USE_FINAL_STATE_GRADIENT:
|
321 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
322 |
+
b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
|
323 |
+
p_dhr = tl.make_block_ptr(dhr + i_sh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
324 |
+
tl.store(p_dhr, b_dh.to(p_dhr.dtype.element_ty), boundary_check=(0, 1))
|
325 |
+
|
326 |
+
for i_t in range(tl.cdiv(min(i_s * S + S, T), BT) - 1, tl.cdiv(i_s * S, BT) - 1, -1):
|
327 |
+
if HEAD_FIRST:
|
328 |
+
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
329 |
+
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
330 |
+
else:
|
331 |
+
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
332 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
333 |
+
|
334 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
335 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
336 |
+
# [BT, BV]
|
337 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
338 |
+
|
339 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
340 |
+
if USE_G:
|
341 |
+
if HEAD_FIRST:
|
342 |
+
p_g = g + i_ng * T + i_t * BT + tl.arange(0, BT)
|
343 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
344 |
+
b_g_last = tl.load(g + i_ng * T + last_idx)
|
345 |
+
else:
|
346 |
+
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
|
347 |
+
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
|
348 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
349 |
+
b_q = (b_q * exp(b_g)[None, :]).to(b_q.dtype)
|
350 |
+
b_dh *= exp(b_g_last)
|
351 |
+
|
352 |
+
if USE_GK:
|
353 |
+
if HEAD_FIRST:
|
354 |
+
p_gk = tl.make_block_ptr(gk + i_ng * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
355 |
+
p_gk_last = gk + (i_ng * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
|
356 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
357 |
+
else:
|
358 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
359 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
360 |
+
|
361 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
362 |
+
b_q = (b_q * exp(b_gk)).to(b_q.dtype)
|
363 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
364 |
+
b_dh *= exp(b_gk_last)[:, None]
|
365 |
+
|
366 |
+
if USE_GV:
|
367 |
+
if HEAD_FIRST:
|
368 |
+
p_gv = tl.make_block_ptr(gv + i_ng * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
369 |
+
p_gv_last = gv + (i_ng * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
|
370 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
371 |
+
else:
|
372 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
373 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
374 |
+
|
375 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
376 |
+
b_do = (b_do * exp(b_gv)).to(b_do.dtype)
|
377 |
+
|
378 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
379 |
+
b_dh *= exp(b_gv_last)[None, :]
|
380 |
+
|
381 |
+
b_dh += tl.dot(b_q, b_do)
|
382 |
+
|
383 |
+
if NS > 1:
|
384 |
+
p_dhs = tl.make_block_ptr(dhs + i_sh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
385 |
+
tl.store(p_dhs, b_dh.to(p_dhs.dtype.element_ty), boundary_check=(0, 1))
|
386 |
+
elif STORE_INITIAL_STATE_GRADIENT:
|
387 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
388 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
389 |
+
|
390 |
+
|
391 |
+
@triton.heuristics({
|
392 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
393 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
394 |
+
})
|
395 |
+
@triton.autotune(
|
396 |
+
configs=[
|
397 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
398 |
+
for BK in [32, 64]
|
399 |
+
for BV in [32, 64]
|
400 |
+
for num_warps in [2, 4, 8]
|
401 |
+
for num_stages in [2, 3, 4]
|
402 |
+
],
|
403 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV'],
|
404 |
+
)
|
405 |
+
@triton.jit(do_not_specialize=['T'])
|
406 |
+
def chunk_bwd_kernel_dh_reduction(
|
407 |
+
g,
|
408 |
+
gk,
|
409 |
+
gv,
|
410 |
+
dhs,
|
411 |
+
dhr,
|
412 |
+
dh0,
|
413 |
+
offsets,
|
414 |
+
split_offsets,
|
415 |
+
T,
|
416 |
+
S: tl.constexpr,
|
417 |
+
H: tl.constexpr,
|
418 |
+
HQ: tl.constexpr,
|
419 |
+
K: tl.constexpr,
|
420 |
+
V: tl.constexpr,
|
421 |
+
BT: tl.constexpr,
|
422 |
+
BK: tl.constexpr,
|
423 |
+
BV: tl.constexpr,
|
424 |
+
NG: tl.constexpr,
|
425 |
+
USE_G: tl.constexpr,
|
426 |
+
USE_GK: tl.constexpr,
|
427 |
+
USE_GV: tl.constexpr,
|
428 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
429 |
+
USE_OFFSETS: tl.constexpr,
|
430 |
+
HEAD_FIRST: tl.constexpr
|
431 |
+
):
|
432 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
433 |
+
i_n, i_hq = i_nh // HQ, i_nh % HQ
|
434 |
+
i_ng, i_h = i_nh // NG, i_hq // NG
|
435 |
+
if USE_OFFSETS:
|
436 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
437 |
+
T = eos - bos
|
438 |
+
NS = tl.cdiv(T, S)
|
439 |
+
boh = tl.load(split_offsets + i_n).to(tl.int32)
|
440 |
+
else:
|
441 |
+
bos, eos = i_n * T, i_n * T + T
|
442 |
+
NS = tl.cdiv(T, S)
|
443 |
+
boh = i_n * NS
|
444 |
+
|
445 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
446 |
+
for i_s in range(NS - 2, -1, -1):
|
447 |
+
p_dhs = tl.make_block_ptr(dhs + ((boh+i_s+1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
448 |
+
p_dhr = tl.make_block_ptr(dhr + ((boh+i_s) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
449 |
+
b_dh += tl.load(p_dhs, boundary_check=(0, 1)).to(tl.float32)
|
450 |
+
tl.store(p_dhr, b_dh.to(p_dhr.dtype.element_ty), boundary_check=(0, 1))
|
451 |
+
|
452 |
+
for i_t in range(tl.cdiv(min(i_s * S + S, T), BT) - 1, tl.cdiv(i_s * S, BT) - 1, -1):
|
453 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
454 |
+
# scalar decay
|
455 |
+
if USE_G:
|
456 |
+
if HEAD_FIRST:
|
457 |
+
b_g_last = tl.load(g + i_ng * T + last_idx)
|
458 |
+
else:
|
459 |
+
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
|
460 |
+
b_dh *= exp(b_g_last)
|
461 |
+
|
462 |
+
if USE_GK:
|
463 |
+
if HEAD_FIRST:
|
464 |
+
p_gk_last = gk + (i_ng * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
|
465 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
466 |
+
else:
|
467 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
468 |
+
|
469 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
470 |
+
b_dh *= exp(b_gk_last)[:, None]
|
471 |
+
|
472 |
+
if USE_GV:
|
473 |
+
if HEAD_FIRST:
|
474 |
+
p_gv_last = gv + (i_ng * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
|
475 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
476 |
+
else:
|
477 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
478 |
+
|
479 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
480 |
+
b_dh *= exp(b_gv_last)[None, :]
|
481 |
+
|
482 |
+
if NS > 1:
|
483 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
484 |
+
p_dhs = tl.make_block_ptr(dhs + (boh * H + i_h)*K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
485 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
486 |
+
b_dh += tl.load(p_dhs, boundary_check=(0, 1)).to(tl.float32)
|
487 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
488 |
+
|
489 |
+
|
490 |
+
def chunk_fwd_h(
|
491 |
+
k: torch.Tensor,
|
492 |
+
v: torch.Tensor,
|
493 |
+
g: torch.Tensor,
|
494 |
+
gk: torch.Tensor,
|
495 |
+
gv: torch.Tensor,
|
496 |
+
h0: torch.Tensor,
|
497 |
+
output_final_state: bool,
|
498 |
+
offsets: Optional[torch.LongTensor] = None,
|
499 |
+
split_offsets: Optional[torch.LongTensor] = None,
|
500 |
+
split_indices: Optional[torch.LongTensor] = None,
|
501 |
+
head_first: bool = True,
|
502 |
+
chunk_size: int = 64,
|
503 |
+
split_size: int = 256,
|
504 |
+
states_in_fp32: bool = True
|
505 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
506 |
+
if head_first:
|
507 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
508 |
+
else:
|
509 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
510 |
+
# B: batch size
|
511 |
+
# N: the actual number of sequences in the batch
|
512 |
+
# H: number of heads
|
513 |
+
# T: sequence length, can be variable across sequences
|
514 |
+
# S: split size, a multiple of chunk size
|
515 |
+
# BT: chunk size
|
516 |
+
S, BT = split_size, chunk_size
|
517 |
+
assert S % BT == 0, f"The `split_size` (got {S}) must be a multiple of `chunk_size` {BT}"
|
518 |
+
if offsets is None:
|
519 |
+
N = B
|
520 |
+
NS = N * triton.cdiv(T, S)
|
521 |
+
else:
|
522 |
+
N = len(offsets) - 1
|
523 |
+
NS = split_offsets[-1]
|
524 |
+
|
525 |
+
# unreduced kv states per split
|
526 |
+
hs = k.new_empty(NS, H, K, V, dtype=torch.float)
|
527 |
+
# reduced states per split
|
528 |
+
hr = k.new_empty(NS, H, K, V, dtype=torch.float if states_in_fp32 else k.dtype)
|
529 |
+
ht = k.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None
|
530 |
+
# parallelized over splits
|
531 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), NS * H)
|
532 |
+
chunk_fwd_kernel_h_split[grid](
|
533 |
+
k=k,
|
534 |
+
v=v,
|
535 |
+
g=g,
|
536 |
+
gk=gk,
|
537 |
+
gv=gv,
|
538 |
+
hs=hs,
|
539 |
+
hr=hr,
|
540 |
+
h0=h0,
|
541 |
+
ht=ht,
|
542 |
+
offsets=offsets,
|
543 |
+
split_indices=split_indices,
|
544 |
+
T=T,
|
545 |
+
S=S,
|
546 |
+
H=H,
|
547 |
+
K=K,
|
548 |
+
V=V,
|
549 |
+
BT=BT,
|
550 |
+
USE_G=g is not None,
|
551 |
+
USE_GK=gk is not None,
|
552 |
+
USE_GV=gv is not None,
|
553 |
+
HEAD_FIRST=head_first
|
554 |
+
)
|
555 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
|
556 |
+
chunk_fwd_kernel_h_reduction[grid](
|
557 |
+
g=g,
|
558 |
+
gk=gk,
|
559 |
+
gv=gv,
|
560 |
+
hs=hs,
|
561 |
+
hr=hr,
|
562 |
+
ht=ht,
|
563 |
+
offsets=offsets,
|
564 |
+
split_offsets=split_offsets,
|
565 |
+
T=T,
|
566 |
+
S=S,
|
567 |
+
H=H,
|
568 |
+
K=K,
|
569 |
+
V=V,
|
570 |
+
BT=BT,
|
571 |
+
USE_G=g is not None,
|
572 |
+
USE_GK=gk is not None,
|
573 |
+
USE_GV=gv is not None,
|
574 |
+
HEAD_FIRST=head_first
|
575 |
+
)
|
576 |
+
return hr, ht
|
577 |
+
|
578 |
+
|
579 |
+
def chunk_bwd_dh(
|
580 |
+
q: torch.Tensor,
|
581 |
+
k: torch.Tensor,
|
582 |
+
v: torch.Tensor,
|
583 |
+
g: torch.Tensor,
|
584 |
+
gk: torch.Tensor,
|
585 |
+
gv: torch.Tensor,
|
586 |
+
do: torch.Tensor,
|
587 |
+
h0: torch.Tensor,
|
588 |
+
dht: torch.Tensor,
|
589 |
+
scale: float,
|
590 |
+
offsets: Optional[torch.Tensor] = None,
|
591 |
+
split_offsets: Optional[torch.Tensor] = None,
|
592 |
+
split_indices: Optional[torch.Tensor] = None,
|
593 |
+
head_first: bool = True,
|
594 |
+
chunk_size: int = 64,
|
595 |
+
split_size: int = 256,
|
596 |
+
states_in_fp32: bool = True
|
597 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
598 |
+
if head_first:
|
599 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
600 |
+
HQ = q.shape[1]
|
601 |
+
else:
|
602 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
603 |
+
HQ = q.shape[2]
|
604 |
+
# B: batch size
|
605 |
+
# N: the actual number of sequences in the batch
|
606 |
+
# H: number of heads
|
607 |
+
# T: sequence length, can be variable across sequences
|
608 |
+
# S: split size, a multiple of chunk size
|
609 |
+
# BT: chunk size
|
610 |
+
S, BT = max(chunk_size, min(split_size, triton.next_power_of_2(T))), chunk_size
|
611 |
+
assert S % BT == 0, f"The `split_size` (got {S}) must be a multiple of `chunk_size` {BT}"
|
612 |
+
if offsets is None:
|
613 |
+
N = B
|
614 |
+
NS = N * triton.cdiv(T, S)
|
615 |
+
else:
|
616 |
+
N = len(offsets) - 1
|
617 |
+
NS = split_offsets[-1]
|
618 |
+
# number of groups in GQA
|
619 |
+
NG = HQ // H
|
620 |
+
|
621 |
+
dhs = q.new_empty(NS, HQ, K, V, dtype=torch.float)
|
622 |
+
dhr = q.new_empty(NS, HQ, K, V, dtype=torch.float if states_in_fp32 else k.dtype)
|
623 |
+
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None
|
624 |
+
|
625 |
+
# parallelized over splits
|
626 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), NS * HQ)
|
627 |
+
chunk_bwd_kernel_dh_split[grid](
|
628 |
+
q=q,
|
629 |
+
g=g,
|
630 |
+
gk=gk,
|
631 |
+
gv=gv,
|
632 |
+
do=do,
|
633 |
+
dht=dht,
|
634 |
+
dhs=dhs,
|
635 |
+
dhr=dhr,
|
636 |
+
dh0=dh0,
|
637 |
+
offsets=offsets,
|
638 |
+
split_indices=split_indices,
|
639 |
+
scale=scale,
|
640 |
+
T=T,
|
641 |
+
S=S,
|
642 |
+
HQ=HQ,
|
643 |
+
H=H,
|
644 |
+
K=K,
|
645 |
+
V=V,
|
646 |
+
BT=BT,
|
647 |
+
NG=NG,
|
648 |
+
USE_G=g is not None,
|
649 |
+
USE_GK=gk is not None,
|
650 |
+
USE_GV=gv is not None,
|
651 |
+
HEAD_FIRST=head_first,
|
652 |
+
)
|
653 |
+
|
654 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * HQ)
|
655 |
+
chunk_bwd_kernel_dh_reduction[grid](
|
656 |
+
g=g,
|
657 |
+
gk=gk,
|
658 |
+
gv=gv,
|
659 |
+
dhs=dhs,
|
660 |
+
dhr=dhr,
|
661 |
+
dh0=dh0,
|
662 |
+
offsets=offsets,
|
663 |
+
split_offsets=split_offsets,
|
664 |
+
T=T,
|
665 |
+
S=S,
|
666 |
+
HQ=HQ,
|
667 |
+
H=H,
|
668 |
+
K=K,
|
669 |
+
V=V,
|
670 |
+
BT=BT,
|
671 |
+
NG=NG,
|
672 |
+
USE_G=g is not None,
|
673 |
+
USE_GK=gk is not None,
|
674 |
+
USE_GV=gv is not None,
|
675 |
+
HEAD_FIRST=head_first
|
676 |
+
)
|
677 |
+
return dhr, dh0
|
fla/ops/common/chunk_o.py
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils.op import exp, safe_exp
|
11 |
+
from fla.utils import check_shared_mem, is_nvidia_hopper
|
12 |
+
|
13 |
+
BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]
|
14 |
+
NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]
|
15 |
+
|
16 |
+
|
17 |
+
@triton.heuristics({
|
18 |
+
'USE_G': lambda args: args['g'] is not None,
|
19 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
20 |
+
})
|
21 |
+
@triton.autotune(
|
22 |
+
configs=[
|
23 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
24 |
+
for BK in BKV_LIST
|
25 |
+
for BV in BKV_LIST
|
26 |
+
for num_warps in NUM_WARPS
|
27 |
+
for num_stages in [2, 3, 4]
|
28 |
+
],
|
29 |
+
key=['H', 'K', 'V', 'BT'],
|
30 |
+
)
|
31 |
+
@triton.jit(do_not_specialize=['T'])
|
32 |
+
def chunk_fwd_kernel_o(
|
33 |
+
q,
|
34 |
+
k,
|
35 |
+
v,
|
36 |
+
h,
|
37 |
+
g,
|
38 |
+
o,
|
39 |
+
offsets,
|
40 |
+
indices,
|
41 |
+
scale,
|
42 |
+
T,
|
43 |
+
H: tl.constexpr,
|
44 |
+
K: tl.constexpr,
|
45 |
+
V: tl.constexpr,
|
46 |
+
BT: tl.constexpr,
|
47 |
+
BK: tl.constexpr,
|
48 |
+
BV: tl.constexpr,
|
49 |
+
USE_G: tl.constexpr,
|
50 |
+
USE_OFFSETS: tl.constexpr,
|
51 |
+
HEAD_FIRST: tl.constexpr
|
52 |
+
):
|
53 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
54 |
+
i_b, i_h = i_bh // H, i_bh % H
|
55 |
+
|
56 |
+
if USE_OFFSETS:
|
57 |
+
i_tg = i_t
|
58 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
59 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
60 |
+
T = eos - bos
|
61 |
+
NT = tl.cdiv(T, BT)
|
62 |
+
else:
|
63 |
+
NT = tl.cdiv(T, BT)
|
64 |
+
i_tg = i_b * NT + i_t
|
65 |
+
bos, eos = i_b * T, i_b * T + T
|
66 |
+
|
67 |
+
s_qk = K if HEAD_FIRST else H*K
|
68 |
+
s_vo = V if HEAD_FIRST else H*V
|
69 |
+
s_g = 1 if HEAD_FIRST else H
|
70 |
+
# offset calculation
|
71 |
+
q += (i_bh * T*K) if HEAD_FIRST else ((bos * H + i_h) * K)
|
72 |
+
k += (i_bh * T*K) if HEAD_FIRST else ((bos * H + i_h) * K)
|
73 |
+
v += (i_bh * T*V) if HEAD_FIRST else ((bos * H + i_h) * V)
|
74 |
+
o += (i_bh * T*V) if HEAD_FIRST else ((bos * H + i_h) * V)
|
75 |
+
h += ((i_bh * NT + i_t).to(tl.int64) * K*V) if HEAD_FIRST else ((i_tg * H + i_h).to(tl.int64) * K*V)
|
76 |
+
|
77 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
78 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
79 |
+
|
80 |
+
for i_k in range(tl.cdiv(K, BK)):
|
81 |
+
p_q = tl.make_block_ptr(q, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
82 |
+
p_k = tl.make_block_ptr(k, (K, T), (1, s_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
83 |
+
p_h = tl.make_block_ptr(h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
84 |
+
# [BT, BK]
|
85 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
86 |
+
# [BK, BT]
|
87 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
88 |
+
# [BK, BV]
|
89 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
90 |
+
|
91 |
+
# [BT, BK] @ [BK, BV] -> [BT, BV]
|
92 |
+
b_o += tl.dot(b_q, b_h)
|
93 |
+
# [BT, BK] @ [BK, BT] -> [BT, BT]
|
94 |
+
b_A += tl.dot(b_q, b_k)
|
95 |
+
|
96 |
+
if USE_G:
|
97 |
+
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
|
98 |
+
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
|
99 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
100 |
+
b_o = b_o * exp(b_g)[:, None]
|
101 |
+
b_A = b_A * safe_exp(b_g[:, None] - b_g[None, :])
|
102 |
+
|
103 |
+
o_i = tl.arange(0, BT)
|
104 |
+
m_A = o_i[:, None] >= o_i[None, :]
|
105 |
+
b_A = tl.where(m_A, b_A, 0)
|
106 |
+
|
107 |
+
p_v = tl.make_block_ptr(v, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
108 |
+
p_o = tl.make_block_ptr(o, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
109 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
110 |
+
|
111 |
+
# to fix mma -> mma layout conversion
|
112 |
+
# already solved by triton v3.2 or higher
|
113 |
+
b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
|
114 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
115 |
+
|
116 |
+
|
117 |
+
@triton.heuristics({
|
118 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
119 |
+
'USE_G': lambda args: args['g'] is not None,
|
120 |
+
'USE_DW': lambda args: args['dw'] is not None
|
121 |
+
})
|
122 |
+
@triton.autotune(
|
123 |
+
configs=[
|
124 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
125 |
+
for num_warps in NUM_WARPS
|
126 |
+
for num_stages in [2, 3, 4]
|
127 |
+
],
|
128 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G', 'USE_DW'],
|
129 |
+
)
|
130 |
+
@triton.jit(do_not_specialize=['T'])
|
131 |
+
def chunk_bwd_kernel_dqkwg(
|
132 |
+
q,
|
133 |
+
k,
|
134 |
+
v,
|
135 |
+
h,
|
136 |
+
g,
|
137 |
+
do,
|
138 |
+
dh,
|
139 |
+
dq,
|
140 |
+
dk,
|
141 |
+
dg,
|
142 |
+
w,
|
143 |
+
dv,
|
144 |
+
dw,
|
145 |
+
offsets,
|
146 |
+
indices,
|
147 |
+
scale,
|
148 |
+
B: tl.constexpr,
|
149 |
+
T,
|
150 |
+
H: tl.constexpr,
|
151 |
+
K: tl.constexpr,
|
152 |
+
V: tl.constexpr,
|
153 |
+
BT: tl.constexpr,
|
154 |
+
BK: tl.constexpr,
|
155 |
+
BV: tl.constexpr,
|
156 |
+
USE_G: tl.constexpr,
|
157 |
+
USE_DW: tl.constexpr,
|
158 |
+
USE_OFFSETS: tl.constexpr,
|
159 |
+
HEAD_FIRST: tl.constexpr
|
160 |
+
):
|
161 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
162 |
+
i_b, i_h = i_bh // H, i_bh % H
|
163 |
+
if USE_G:
|
164 |
+
dg += i_k * B * H * T
|
165 |
+
if USE_OFFSETS:
|
166 |
+
i_tg = i_t
|
167 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
168 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
169 |
+
T = eos - bos
|
170 |
+
NT = tl.cdiv(T, BT)
|
171 |
+
else:
|
172 |
+
NT = tl.cdiv(T, BT)
|
173 |
+
i_tg = i_b * NT + i_t
|
174 |
+
bos, eos = i_b * T, i_b * T + T
|
175 |
+
|
176 |
+
# offset calculation
|
177 |
+
v += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
178 |
+
do += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
179 |
+
h += (i_bh * NT + i_t).to(tl.int64) * K*V if HEAD_FIRST else (i_tg * H + i_h).to(tl.int64) * K*V
|
180 |
+
dh += (i_bh * NT + i_t).to(tl.int64) * K*V if HEAD_FIRST else (i_tg * H + i_h).to(tl.int64) * K*V
|
181 |
+
q += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
182 |
+
k += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
183 |
+
dq += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
184 |
+
dk += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
185 |
+
s_qk = K if HEAD_FIRST else H*K
|
186 |
+
s_vo = V if HEAD_FIRST else H*V
|
187 |
+
s_g = 1 if HEAD_FIRST else H
|
188 |
+
|
189 |
+
# for delta rule only
|
190 |
+
if USE_DW:
|
191 |
+
dw += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
192 |
+
dv += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
193 |
+
w += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
194 |
+
|
195 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
196 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
197 |
+
b_ds = tl.zeros([BT, BT], dtype=tl.float32)
|
198 |
+
b_dg_last = tl.zeros([1,], dtype=tl.float32) if USE_G else None
|
199 |
+
b_dw = tl.zeros([BT, BK], dtype=tl.float32) if USE_DW else None
|
200 |
+
|
201 |
+
for i_v in range(tl.cdiv(V, BV)):
|
202 |
+
p_v = tl.make_block_ptr(v, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
203 |
+
p_do = tl.make_block_ptr(do, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
204 |
+
p_h = tl.make_block_ptr(h, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
205 |
+
p_dh = tl.make_block_ptr(dh, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
206 |
+
# [BT, BV]
|
207 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
208 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
209 |
+
# [BV, BK]
|
210 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
211 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
212 |
+
if USE_G:
|
213 |
+
b_dg_last += (tl.sum(b_h * b_dh))
|
214 |
+
# [BT, BV] @ [BV, BT] -> [BT, BT]
|
215 |
+
b_ds += tl.dot(b_do, tl.trans(b_v))
|
216 |
+
# [BT, BV] @ [BV, BK] -> [BT, BK]
|
217 |
+
b_dq += tl.dot(b_do, b_h.to(b_do.dtype))
|
218 |
+
# [BT, BV] @ [BV, BK] -> [BT, BK]
|
219 |
+
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype))
|
220 |
+
if USE_DW:
|
221 |
+
p_dv = tl.make_block_ptr(dv, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
222 |
+
b_dv = tl.load(p_dv, boundary_check=(0, 1))
|
223 |
+
b_dw += tl.dot(b_dv.to(b_v.dtype), b_h.to(b_v.dtype))
|
224 |
+
|
225 |
+
if USE_DW and not USE_G:
|
226 |
+
p_dw = tl.make_block_ptr(dw, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
227 |
+
tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
|
228 |
+
|
229 |
+
tl.debug_barrier()
|
230 |
+
o_i = tl.arange(0, BT)
|
231 |
+
p_q = tl.make_block_ptr(q, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
232 |
+
p_k = tl.make_block_ptr(k, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
233 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
234 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
235 |
+
|
236 |
+
p_dq = tl.make_block_ptr(dq, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
237 |
+
p_dk = tl.make_block_ptr(dk, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
238 |
+
|
239 |
+
if USE_G:
|
240 |
+
b_dg = tl.zeros([BT,], dtype=tl.float32)
|
241 |
+
g += i_bh * T if HEAD_FIRST else bos * H + i_h
|
242 |
+
dg += i_bh * T if HEAD_FIRST else bos * H + i_h
|
243 |
+
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
|
244 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
245 |
+
b_g_last = tl.load(g + (min(i_t * BT + BT, T) - 1) * s_g)
|
246 |
+
b_dg_last *= exp(b_g_last)
|
247 |
+
|
248 |
+
if USE_DW:
|
249 |
+
p_w = tl.make_block_ptr(w, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
250 |
+
p_dw = tl.make_block_ptr(dw, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
251 |
+
b_w = tl.load(p_w, boundary_check=(0, 1))
|
252 |
+
b_dw = b_dw * exp(b_g)[:, None]
|
253 |
+
tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
|
254 |
+
b_dg -= tl.sum(b_w * b_dw, axis=1)
|
255 |
+
|
256 |
+
b_dq = b_dq * exp(b_g)[:, None] * scale
|
257 |
+
b_dg += tl.sum(b_dq * b_q, axis=1)
|
258 |
+
|
259 |
+
b_dk = b_dk * safe_exp(-b_g + b_g_last)[:, None]
|
260 |
+
b_dg -= tl.sum(b_k * b_dk, axis=1)
|
261 |
+
b_dg_last += tl.sum(b_dk * b_k)
|
262 |
+
|
263 |
+
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * safe_exp(b_g[:, None] - b_g[None, :]), 0) * scale
|
264 |
+
b_ds2 = b_ds * tl.dot(b_q, tl.trans(b_k))
|
265 |
+
b_dg += tl.sum(b_ds2, axis=1)
|
266 |
+
b_dg -= tl.sum(b_ds2, axis=0)
|
267 |
+
|
268 |
+
b_ds = b_ds.to(b_k.dtype)
|
269 |
+
# [BT, BK]
|
270 |
+
b_dq += tl.dot(b_ds, b_k)
|
271 |
+
b_dk += tl.dot(tl.trans(b_ds), b_q)
|
272 |
+
p_dg = tl.make_block_ptr(dg, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
|
273 |
+
# (SY 09/21) revcumsum in a separate kernel due to strange triton compiler issue
|
274 |
+
# b_dg = tl.dot(tl.where(o_i[:, None] <= o_i[None, :], 1., 0.), b_dg, allow_tf32=False) + b_dg_last)
|
275 |
+
b_dg = tl.where(o_i < min(BT, T-i_t*BT) - 1, b_dg, b_dg + b_dg_last)
|
276 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
277 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
278 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
|
279 |
+
else:
|
280 |
+
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds, 0)
|
281 |
+
b_ds = b_ds.to(b_k.dtype)
|
282 |
+
b_dq += tl.dot(b_ds, b_k)
|
283 |
+
b_dk += tl.dot(tl.trans(b_ds), b_q) * scale
|
284 |
+
b_dq *= scale
|
285 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
286 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
287 |
+
|
288 |
+
|
289 |
+
@triton.heuristics({
|
290 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
291 |
+
'USE_G': lambda args: args['g'] is not None,
|
292 |
+
})
|
293 |
+
@triton.autotune(
|
294 |
+
configs=[
|
295 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
296 |
+
for num_warps in [2, 4, 8]
|
297 |
+
for num_stages in [2, 3, 4]
|
298 |
+
],
|
299 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'],
|
300 |
+
)
|
301 |
+
@triton.jit(do_not_specialize=['T'])
|
302 |
+
def chunk_bwd_kernel_dv(
|
303 |
+
q,
|
304 |
+
k,
|
305 |
+
g,
|
306 |
+
do,
|
307 |
+
dv,
|
308 |
+
dh,
|
309 |
+
offsets,
|
310 |
+
indices,
|
311 |
+
scale,
|
312 |
+
T,
|
313 |
+
H: tl.constexpr,
|
314 |
+
K: tl.constexpr,
|
315 |
+
V: tl.constexpr,
|
316 |
+
BT: tl.constexpr,
|
317 |
+
BK: tl.constexpr,
|
318 |
+
BV: tl.constexpr,
|
319 |
+
USE_G: tl.constexpr,
|
320 |
+
USE_OFFSETS: tl.constexpr,
|
321 |
+
HEAD_FIRST: tl.constexpr
|
322 |
+
):
|
323 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
324 |
+
i_b, i_h = i_bh // H, i_bh % H
|
325 |
+
if USE_OFFSETS:
|
326 |
+
i_tg = i_t
|
327 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
328 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
329 |
+
T = eos - bos
|
330 |
+
NT = tl.cdiv(T, BT)
|
331 |
+
else:
|
332 |
+
NT = tl.cdiv(T, BT)
|
333 |
+
i_tg = i_b * NT + i_t
|
334 |
+
bos, eos = i_b * T, i_b * T + T
|
335 |
+
|
336 |
+
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
|
337 |
+
|
338 |
+
# offset calculation
|
339 |
+
q += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
340 |
+
k += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
341 |
+
do += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
342 |
+
dv += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
343 |
+
s_qk = K if HEAD_FIRST else H*K
|
344 |
+
s_vo = V if HEAD_FIRST else H*V
|
345 |
+
s_g = 1 if HEAD_FIRST else H
|
346 |
+
dh += (i_bh * NT + i_t).to(tl.int64) * K*V if HEAD_FIRST else (i_tg * H + i_h).to(tl.int64) * K*V
|
347 |
+
|
348 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
349 |
+
for i_k in range(tl.cdiv(K, BK)):
|
350 |
+
p_k = tl.make_block_ptr(k, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
351 |
+
p_q = tl.make_block_ptr(q, (K, T), (1, s_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
352 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
353 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
354 |
+
b_A += tl.dot(b_k, b_q)
|
355 |
+
p_dh = tl.make_block_ptr(dh, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
356 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
357 |
+
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype))
|
358 |
+
|
359 |
+
if USE_G:
|
360 |
+
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
|
361 |
+
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
|
362 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
363 |
+
b_g_last = tl.load(g + (min(i_t * BT + BT, T) - 1) * s_g)
|
364 |
+
b_dv *= safe_exp(-b_g + b_g_last)[:, None]
|
365 |
+
|
366 |
+
mask = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :])
|
367 |
+
if USE_G:
|
368 |
+
b_A = tl.where(mask, b_A * safe_exp(b_g[None, :] - b_g[:, None]) * scale, 0).to(do.dtype.element_ty)
|
369 |
+
else:
|
370 |
+
b_A = tl.where(mask, b_A * scale, 0).to(do.dtype.element_ty)
|
371 |
+
p_do = tl.make_block_ptr(do, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
372 |
+
p_dv = tl.make_block_ptr(dv, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
373 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
374 |
+
b_dv += tl.dot(b_A.to(b_do.dtype), b_do)
|
375 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
376 |
+
|
377 |
+
|
378 |
+
@triton.heuristics({
|
379 |
+
'USE_G': lambda args: args['g'] is not None,
|
380 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
381 |
+
})
|
382 |
+
@triton.autotune(
|
383 |
+
configs=[
|
384 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
385 |
+
for num_warps in NUM_WARPS
|
386 |
+
for num_stages in [2, 3, 4]
|
387 |
+
],
|
388 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'USE_G'],
|
389 |
+
)
|
390 |
+
@triton.jit(do_not_specialize=['T'])
|
391 |
+
def chunk_bwd_kernel_dv_local(
|
392 |
+
q,
|
393 |
+
k,
|
394 |
+
g,
|
395 |
+
do,
|
396 |
+
dv,
|
397 |
+
offsets,
|
398 |
+
indices,
|
399 |
+
scale,
|
400 |
+
T,
|
401 |
+
H: tl.constexpr,
|
402 |
+
K: tl.constexpr,
|
403 |
+
V: tl.constexpr,
|
404 |
+
BT: tl.constexpr,
|
405 |
+
BK: tl.constexpr,
|
406 |
+
BV: tl.constexpr,
|
407 |
+
USE_G: tl.constexpr,
|
408 |
+
USE_OFFSETS: tl.constexpr,
|
409 |
+
HEAD_FIRST: tl.constexpr
|
410 |
+
):
|
411 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
412 |
+
i_b, i_h = i_bh // H, i_bh % H
|
413 |
+
if USE_OFFSETS:
|
414 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
415 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
416 |
+
T = eos - bos
|
417 |
+
else:
|
418 |
+
bos, eos = i_b * T, i_b * T + T
|
419 |
+
|
420 |
+
# offset calculation
|
421 |
+
q += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
422 |
+
k += i_bh * T*K if HEAD_FIRST else (bos * H + i_h) * K
|
423 |
+
do += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
424 |
+
dv += i_bh * T*V if HEAD_FIRST else (bos * H + i_h) * V
|
425 |
+
s_qk = K if HEAD_FIRST else H*K
|
426 |
+
s_vo = V if HEAD_FIRST else H*V
|
427 |
+
s_g = 1 if HEAD_FIRST else H
|
428 |
+
|
429 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
430 |
+
for i_k in range(tl.cdiv(K, BK)):
|
431 |
+
p_k = tl.make_block_ptr(k, (T, K), (s_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
432 |
+
p_q = tl.make_block_ptr(q, (K, T), (1, s_qk), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
433 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
434 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
435 |
+
b_A += tl.dot(b_k, b_q)
|
436 |
+
|
437 |
+
if USE_G:
|
438 |
+
g += (i_bh * T) if HEAD_FIRST else (bos * H + i_h)
|
439 |
+
p_g = tl.make_block_ptr(g, (T,), (s_g,), (i_t * BT,), (BT,), (0,))
|
440 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
441 |
+
|
442 |
+
mask = (tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :])
|
443 |
+
if USE_G:
|
444 |
+
b_A = tl.where(mask, b_A * safe_exp(b_g[None, :] - b_g[:, None]) * scale, 0).to(do.dtype.element_ty)
|
445 |
+
else:
|
446 |
+
b_A = tl.where(mask, b_A * scale, 0).to(do.dtype.element_ty)
|
447 |
+
|
448 |
+
for i_v in range(tl.cdiv(V, BV)):
|
449 |
+
p_do = tl.make_block_ptr(do, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
450 |
+
p_dv = tl.make_block_ptr(dv, (T, V), (s_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
451 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
452 |
+
b_dv = tl.dot(b_A.to(b_do.dtype), b_do)
|
453 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
454 |
+
|
455 |
+
|
456 |
+
def chunk_fwd_o(
|
457 |
+
q: torch.Tensor,
|
458 |
+
k: torch.Tensor,
|
459 |
+
v: torch.Tensor,
|
460 |
+
h: torch.Tensor,
|
461 |
+
g: Optional[torch.Tensor] = None, # cumsum of log decay
|
462 |
+
scale: Optional[float] = None,
|
463 |
+
offsets: Optional[torch.LongTensor] = None,
|
464 |
+
indices: Optional[torch.LongTensor] = None,
|
465 |
+
head_first: bool = True,
|
466 |
+
chunk_size: int = 64
|
467 |
+
) -> torch.Tensor:
|
468 |
+
if head_first:
|
469 |
+
B, H, T, K, V = *q.shape, v.shape[-1]
|
470 |
+
else:
|
471 |
+
B, T, H, K, V = *q.shape, v.shape[-1]
|
472 |
+
if scale is None:
|
473 |
+
scale = k.shape[-1] ** -0.5
|
474 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
475 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
476 |
+
|
477 |
+
o = torch.empty_like(v)
|
478 |
+
|
479 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT, B * H)
|
480 |
+
chunk_fwd_kernel_o[grid](
|
481 |
+
q,
|
482 |
+
k,
|
483 |
+
v,
|
484 |
+
h,
|
485 |
+
g,
|
486 |
+
o,
|
487 |
+
offsets,
|
488 |
+
indices,
|
489 |
+
scale,
|
490 |
+
T=T,
|
491 |
+
H=H,
|
492 |
+
K=K,
|
493 |
+
V=V,
|
494 |
+
BT=BT,
|
495 |
+
HEAD_FIRST=head_first
|
496 |
+
)
|
497 |
+
return o
|
498 |
+
|
499 |
+
|
500 |
+
def chunk_bwd_dv(
|
501 |
+
q: torch.Tensor,
|
502 |
+
k: torch.Tensor,
|
503 |
+
g: torch.Tensor,
|
504 |
+
do: torch.Tensor,
|
505 |
+
dh: torch.Tensor,
|
506 |
+
scale: float,
|
507 |
+
offsets: Optional[torch.LongTensor] = None,
|
508 |
+
indices: Optional[torch.LongTensor] = None,
|
509 |
+
head_first: bool = True,
|
510 |
+
chunk_size: int = 64
|
511 |
+
) -> torch.Tensor:
|
512 |
+
if head_first:
|
513 |
+
B, H, T, K, V = *k.shape, do.shape[-1]
|
514 |
+
else:
|
515 |
+
B, T, H, K, V = *k.shape, do.shape[-1]
|
516 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
517 |
+
# H100 can have larger block size
|
518 |
+
if check_shared_mem('hopper', k.device.index):
|
519 |
+
CONST_TILING = 128
|
520 |
+
elif check_shared_mem:
|
521 |
+
CONST_TILING = 64
|
522 |
+
else:
|
523 |
+
CONST_TILING = 32
|
524 |
+
BK = min(triton.next_power_of_2(K), CONST_TILING)
|
525 |
+
BV = min(triton.next_power_of_2(V), CONST_TILING)
|
526 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
527 |
+
NV = triton.cdiv(V, BV)
|
528 |
+
|
529 |
+
dv = torch.empty_like(do)
|
530 |
+
grid = (NV, NT, B * H)
|
531 |
+
chunk_bwd_kernel_dv[grid](
|
532 |
+
q,
|
533 |
+
k,
|
534 |
+
g,
|
535 |
+
do,
|
536 |
+
dv,
|
537 |
+
dh,
|
538 |
+
offsets,
|
539 |
+
indices,
|
540 |
+
scale,
|
541 |
+
T=T,
|
542 |
+
H=H,
|
543 |
+
K=K,
|
544 |
+
V=V,
|
545 |
+
BT=BT,
|
546 |
+
BK=BK,
|
547 |
+
BV=BV,
|
548 |
+
HEAD_FIRST=head_first
|
549 |
+
)
|
550 |
+
return dv
|
551 |
+
|
552 |
+
|
553 |
+
def chunk_bwd_dv_local(
|
554 |
+
q: torch.Tensor,
|
555 |
+
k: torch.Tensor,
|
556 |
+
g: torch.Tensor,
|
557 |
+
do: torch.Tensor,
|
558 |
+
dh: torch.Tensor,
|
559 |
+
scale: float,
|
560 |
+
offsets: Optional[torch.LongTensor] = None,
|
561 |
+
indices: Optional[torch.LongTensor] = None,
|
562 |
+
head_first: bool = True,
|
563 |
+
chunk_size: int = 64
|
564 |
+
) -> torch.Tensor:
|
565 |
+
if head_first:
|
566 |
+
B, H, T, K, V = *k.shape, do.shape[-1]
|
567 |
+
else:
|
568 |
+
B, T, H, K, V = *k.shape, do.shape[-1]
|
569 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
570 |
+
# H100 can have larger block size
|
571 |
+
if check_shared_mem('hopper', k.device.index):
|
572 |
+
CONST_TILING = 128
|
573 |
+
elif check_shared_mem:
|
574 |
+
CONST_TILING = 64
|
575 |
+
else:
|
576 |
+
CONST_TILING = 32
|
577 |
+
BK = min(triton.next_power_of_2(K), CONST_TILING)
|
578 |
+
BV = min(triton.next_power_of_2(V), CONST_TILING)
|
579 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
580 |
+
|
581 |
+
dv = torch.empty_like(do)
|
582 |
+
grid = (NT, B * H)
|
583 |
+
chunk_bwd_kernel_dv_local[grid](
|
584 |
+
q,
|
585 |
+
k,
|
586 |
+
g,
|
587 |
+
do,
|
588 |
+
dv,
|
589 |
+
offsets,
|
590 |
+
indices,
|
591 |
+
scale,
|
592 |
+
T=T,
|
593 |
+
H=H,
|
594 |
+
K=K,
|
595 |
+
V=V,
|
596 |
+
BT=BT,
|
597 |
+
BK=BK,
|
598 |
+
BV=BV,
|
599 |
+
HEAD_FIRST=head_first
|
600 |
+
)
|
601 |
+
return dv
|
602 |
+
|
603 |
+
|
604 |
+
def chunk_bwd_dqkwg(
|
605 |
+
q: torch.Tensor,
|
606 |
+
k: torch.Tensor,
|
607 |
+
v: torch.Tensor,
|
608 |
+
g: torch.Tensor,
|
609 |
+
do: torch.Tensor,
|
610 |
+
h: torch.Tensor,
|
611 |
+
dh: torch.Tensor,
|
612 |
+
dv: Optional[torch.Tensor] = None,
|
613 |
+
w: Optional[torch.Tensor] = None,
|
614 |
+
offsets: Optional[torch.LongTensor] = None,
|
615 |
+
indices: Optional[torch.LongTensor] = None,
|
616 |
+
chunk_size: int = 64,
|
617 |
+
scale: float = 1.0,
|
618 |
+
head_first: bool = True,
|
619 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
620 |
+
|
621 |
+
if head_first:
|
622 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
623 |
+
else:
|
624 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
625 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
626 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
627 |
+
|
628 |
+
CONST_TILING = 64 if check_shared_mem() else 32
|
629 |
+
BK = min(triton.next_power_of_2(K), CONST_TILING)
|
630 |
+
BV = min(triton.next_power_of_2(V), CONST_TILING)
|
631 |
+
NK = triton.cdiv(K, BK)
|
632 |
+
dq = torch.empty_like(q)
|
633 |
+
dk = torch.empty_like(k)
|
634 |
+
dg = torch.empty(NK, *g.shape, dtype=torch.float32, device=g.device) if g is not None else None
|
635 |
+
dw = torch.empty_like(w) if w is not None else None
|
636 |
+
|
637 |
+
grid = (NK, NT, B * H)
|
638 |
+
chunk_bwd_kernel_dqkwg[grid](
|
639 |
+
q=q,
|
640 |
+
k=k,
|
641 |
+
v=v,
|
642 |
+
h=h,
|
643 |
+
g=g,
|
644 |
+
do=do,
|
645 |
+
dh=dh,
|
646 |
+
dv=dv,
|
647 |
+
w=w,
|
648 |
+
dw=dw,
|
649 |
+
dq=dq,
|
650 |
+
dk=dk,
|
651 |
+
dg=dg,
|
652 |
+
offsets=offsets,
|
653 |
+
indices=indices,
|
654 |
+
scale=scale,
|
655 |
+
B=B,
|
656 |
+
T=T,
|
657 |
+
H=H,
|
658 |
+
K=K,
|
659 |
+
V=V,
|
660 |
+
BT=BT,
|
661 |
+
BK=BK,
|
662 |
+
BV=BV,
|
663 |
+
HEAD_FIRST=head_first
|
664 |
+
)
|
665 |
+
|
666 |
+
if dg is not None:
|
667 |
+
dg = dg.sum(0)
|
668 |
+
return dq, dk, dw, dg
|
fla/ops/common/chunk_scaled_dot_kkt.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.common.utils import prepare_chunk_indices
|
11 |
+
|
12 |
+
|
13 |
+
@triton.heuristics({
|
14 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
15 |
+
})
|
16 |
+
@triton.autotune(
|
17 |
+
configs=[
|
18 |
+
triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages)
|
19 |
+
for BK in [32, 64, 128]
|
20 |
+
for num_warps in [2, 4, 8]
|
21 |
+
for num_stages in [2, 3, 4]
|
22 |
+
],
|
23 |
+
key=['H', 'K', 'BT', 'USE_OFFSETS'],
|
24 |
+
)
|
25 |
+
@triton.jit(do_not_specialize=['T'])
|
26 |
+
def chunk_scaled_dot_kkt_fwd_kernel(
|
27 |
+
k,
|
28 |
+
beta,
|
29 |
+
A,
|
30 |
+
offsets,
|
31 |
+
indices,
|
32 |
+
T,
|
33 |
+
H: tl.constexpr,
|
34 |
+
K: tl.constexpr,
|
35 |
+
BT: tl.constexpr,
|
36 |
+
BK: tl.constexpr,
|
37 |
+
HEAD_FIRST: tl.constexpr,
|
38 |
+
USE_OFFSETS: tl.constexpr,
|
39 |
+
):
|
40 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
41 |
+
i_b, i_h = i_bh // H, i_bh % H
|
42 |
+
if USE_OFFSETS:
|
43 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
44 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
45 |
+
T = eos - bos
|
46 |
+
else:
|
47 |
+
bos, eos = i_b * T, i_b * T + T
|
48 |
+
o_t = tl.arange(0, BT)
|
49 |
+
|
50 |
+
if HEAD_FIRST:
|
51 |
+
p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
52 |
+
else:
|
53 |
+
p_beta = tl.make_block_ptr(beta + bos*H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
54 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
55 |
+
|
56 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
57 |
+
for i_k in range(tl.cdiv(K, BK)):
|
58 |
+
if HEAD_FIRST:
|
59 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
60 |
+
else:
|
61 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
62 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
63 |
+
b_kb = b_k * b_beta[:, None]
|
64 |
+
b_A += tl.dot(b_kb.to(b_k.dtype), tl.trans(b_k))
|
65 |
+
|
66 |
+
b_A = tl.where(o_t[:, None] > o_t[None, :], b_A, 0)
|
67 |
+
if HEAD_FIRST:
|
68 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
69 |
+
else:
|
70 |
+
p_A = tl.make_block_ptr(A + (bos*H + i_h) * BT, (T, BT), (BT*H, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
71 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
72 |
+
|
73 |
+
|
74 |
+
def chunk_scaled_dot_kkt_fwd(
|
75 |
+
k: torch.Tensor,
|
76 |
+
beta: torch.Tensor,
|
77 |
+
cu_seqlens: Optional[torch.LongTensor],
|
78 |
+
head_first: bool = False,
|
79 |
+
chunk_size: int = 64,
|
80 |
+
output_dtype: torch.dtype = torch.float32
|
81 |
+
) -> torch.Tensor:
|
82 |
+
r"""
|
83 |
+
Compute beta * K * K^T.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
k (torch.Tensor):
|
87 |
+
The key tensor of shape `[B, T, H, K]` if not `head_first` else `[B, H, T, K]`.
|
88 |
+
beta (torch.Tensor):
|
89 |
+
The beta tensor of shape `[B, T, H]` if not `head_first` else `[B, H, T]`.
|
90 |
+
cu_seqlens (torch.LongTensor):
|
91 |
+
The cumulative sequence lengths of the input tensor.
|
92 |
+
Default: None
|
93 |
+
head_first (bool):
|
94 |
+
If False, the input/output tensor is in the shape of `[B, T, H, K]`.
|
95 |
+
If True, the input/output tensor is in the shape of `[B, H, T, K]`.
|
96 |
+
Default: False
|
97 |
+
chunk_size (int):
|
98 |
+
The chunk size. Default: 64.
|
99 |
+
output_dtype (torch.dtype):
|
100 |
+
The dtype of the output tensor. Default: `torch.float32`
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
beta * K * K^T of shape `[B, T, H, BT]` if not `head_first` else `[B, H, T, BT]`,
|
104 |
+
where `BT` is the chunk size.
|
105 |
+
"""
|
106 |
+
if head_first:
|
107 |
+
B, H, T, K = k.shape
|
108 |
+
else:
|
109 |
+
B, T, H, K = k.shape
|
110 |
+
BT = chunk_size
|
111 |
+
indices = prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
|
112 |
+
NT = triton.cdiv(T, BT) if cu_seqlens is None else len(indices)
|
113 |
+
A = torch.empty(B, *((H, T) if head_first else (T, H)), BT, device=k.device, dtype=output_dtype)
|
114 |
+
chunk_scaled_dot_kkt_fwd_kernel[(NT, B * H)](
|
115 |
+
k=k,
|
116 |
+
beta=beta,
|
117 |
+
A=A,
|
118 |
+
offsets=cu_seqlens,
|
119 |
+
indices=indices,
|
120 |
+
T=T,
|
121 |
+
H=H,
|
122 |
+
K=K,
|
123 |
+
BT=BT,
|
124 |
+
HEAD_FIRST=head_first
|
125 |
+
)
|
126 |
+
return A
|
fla/ops/common/fused_recurrent.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils import chunk_global_cumsum
|
11 |
+
from fla.ops.utils.op import exp
|
12 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
13 |
+
|
14 |
+
|
15 |
+
@triton.heuristics({
|
16 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
17 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
19 |
+
})
|
20 |
+
@triton.autotune(
|
21 |
+
configs=[
|
22 |
+
triton.Config({}, num_warps=num_warps)
|
23 |
+
for num_warps in [1, 2, 4]
|
24 |
+
],
|
25 |
+
key=["BK", "BV", "USE_GK", "USE_GV", "USE_G"],
|
26 |
+
)
|
27 |
+
@triton.jit(do_not_specialize=['T'])
|
28 |
+
def fused_recurrent_fwd_kernel(
|
29 |
+
q,
|
30 |
+
k,
|
31 |
+
v,
|
32 |
+
g,
|
33 |
+
gk,
|
34 |
+
gv,
|
35 |
+
o,
|
36 |
+
h0,
|
37 |
+
ht,
|
38 |
+
offsets,
|
39 |
+
scale,
|
40 |
+
T,
|
41 |
+
B: tl.constexpr,
|
42 |
+
H: tl.constexpr,
|
43 |
+
K: tl.constexpr,
|
44 |
+
V: tl.constexpr,
|
45 |
+
BK: tl.constexpr,
|
46 |
+
BV: tl.constexpr,
|
47 |
+
REVERSE: tl.constexpr,
|
48 |
+
USE_G: tl.constexpr,
|
49 |
+
USE_GK: tl.constexpr,
|
50 |
+
USE_GV: tl.constexpr,
|
51 |
+
USE_INITIAL_STATE: tl.constexpr,
|
52 |
+
STORE_FINAL_STATE: tl.constexpr,
|
53 |
+
USE_OFFSETS: tl.constexpr,
|
54 |
+
HEAD_FIRST: tl.constexpr
|
55 |
+
):
|
56 |
+
# indices
|
57 |
+
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
|
58 |
+
i_n, i_h = i_nh // H, i_nh % H
|
59 |
+
if USE_OFFSETS:
|
60 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
61 |
+
all = T
|
62 |
+
T = eos - bos
|
63 |
+
else:
|
64 |
+
bos, eos = i_n * T, i_n * T + T
|
65 |
+
all = B * T
|
66 |
+
|
67 |
+
if HEAD_FIRST:
|
68 |
+
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
69 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
70 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
71 |
+
p_o = o + (i_k * B*H + i_nh) * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
72 |
+
if USE_G:
|
73 |
+
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
|
74 |
+
if USE_GK:
|
75 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
76 |
+
if USE_GV:
|
77 |
+
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
78 |
+
else:
|
79 |
+
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
80 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
81 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
82 |
+
p_o = o + ((i_k * all + bos) + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
83 |
+
if USE_G:
|
84 |
+
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
|
85 |
+
if USE_GK:
|
86 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
87 |
+
if USE_GV:
|
88 |
+
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
89 |
+
|
90 |
+
mask_k = (i_k * BK + tl.arange(0, BK)) < K
|
91 |
+
mask_v = (i_v * BV + tl.arange(0, BV)) < V
|
92 |
+
mask_h = mask_k[None, :] & mask_v[:, None]
|
93 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
94 |
+
|
95 |
+
if USE_INITIAL_STATE:
|
96 |
+
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
97 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
98 |
+
|
99 |
+
for _ in range(0, T):
|
100 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
101 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
102 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
103 |
+
if USE_GK:
|
104 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
105 |
+
b_h = b_h * exp(b_gk[None, :])
|
106 |
+
if USE_GV:
|
107 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
108 |
+
b_h = b_h * exp(b_gv[:, None])
|
109 |
+
if USE_G:
|
110 |
+
b_g = tl.load(p_g).to(tl.float32)
|
111 |
+
b_h = b_h * exp(b_g)
|
112 |
+
b_h += b_k[None, :] * b_v[:, None]
|
113 |
+
b_o = b_h * b_q[None, :]
|
114 |
+
b_o = tl.sum(b_o, axis=1)
|
115 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
116 |
+
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
117 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
118 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
119 |
+
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
120 |
+
if USE_GK:
|
121 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
122 |
+
if USE_GV:
|
123 |
+
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
124 |
+
if USE_G:
|
125 |
+
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
|
126 |
+
|
127 |
+
if STORE_FINAL_STATE:
|
128 |
+
p_ht = ht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
129 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
130 |
+
|
131 |
+
|
132 |
+
@triton.heuristics({
|
133 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
134 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
135 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
136 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
137 |
+
})
|
138 |
+
@triton.autotune(
|
139 |
+
configs=[
|
140 |
+
triton.Config({}, num_warps=num_warps)
|
141 |
+
for num_warps in [1, 2, 4]
|
142 |
+
],
|
143 |
+
key=['BK', 'BV', 'USE_GK', 'USE_GV', 'USE_G'],
|
144 |
+
)
|
145 |
+
@triton.jit(do_not_specialize=['T'])
|
146 |
+
def fused_recurrent_bwd_kernel(
|
147 |
+
q,
|
148 |
+
k,
|
149 |
+
v,
|
150 |
+
g,
|
151 |
+
gk,
|
152 |
+
gv,
|
153 |
+
h0,
|
154 |
+
do,
|
155 |
+
dq,
|
156 |
+
dk,
|
157 |
+
dv,
|
158 |
+
dht,
|
159 |
+
dh0,
|
160 |
+
offsets,
|
161 |
+
scale,
|
162 |
+
T,
|
163 |
+
B: tl.constexpr,
|
164 |
+
H: tl.constexpr,
|
165 |
+
K: tl.constexpr,
|
166 |
+
V: tl.constexpr,
|
167 |
+
BK: tl.constexpr,
|
168 |
+
BV: tl.constexpr,
|
169 |
+
REVERSE: tl.constexpr,
|
170 |
+
USE_G: tl.constexpr,
|
171 |
+
USE_GK: tl.constexpr,
|
172 |
+
USE_GV: tl.constexpr,
|
173 |
+
USE_INITIAL_STATE: tl.constexpr,
|
174 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
175 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
176 |
+
USE_OFFSETS: tl.constexpr,
|
177 |
+
HEAD_FIRST: tl.constexpr
|
178 |
+
):
|
179 |
+
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
|
180 |
+
i_n, i_h = i_nh // H, i_nh % H
|
181 |
+
if USE_OFFSETS:
|
182 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
183 |
+
all = T
|
184 |
+
T = eos - bos
|
185 |
+
else:
|
186 |
+
bos, eos = i_n * T, i_n * T + T
|
187 |
+
all = B * T
|
188 |
+
|
189 |
+
if HEAD_FIRST:
|
190 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
191 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
192 |
+
p_do = do + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
193 |
+
p_dq = dq + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
194 |
+
if USE_G:
|
195 |
+
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
|
196 |
+
if USE_GK:
|
197 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
198 |
+
if USE_GV:
|
199 |
+
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
200 |
+
else:
|
201 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
202 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
203 |
+
p_do = do + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
204 |
+
p_dq = dq + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
205 |
+
if USE_G:
|
206 |
+
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
|
207 |
+
if USE_GK:
|
208 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
209 |
+
if USE_GV:
|
210 |
+
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
211 |
+
|
212 |
+
mask_k = i_k * BK + tl.arange(0, BK) < K
|
213 |
+
mask_v = i_v * BV + tl.arange(0, BV) < V
|
214 |
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
215 |
+
|
216 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
217 |
+
if USE_INITIAL_STATE:
|
218 |
+
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
219 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
220 |
+
|
221 |
+
for _ in range(0, T):
|
222 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
223 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
224 |
+
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
|
225 |
+
if USE_G:
|
226 |
+
b_g = tl.load(p_g).to(tl.float32)
|
227 |
+
b_h = b_h * exp(b_g)
|
228 |
+
if USE_GK:
|
229 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
230 |
+
b_h = b_h * exp(b_gk[:, None])
|
231 |
+
if USE_GV:
|
232 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
233 |
+
b_h = b_h * exp(b_gv[None, :])
|
234 |
+
b_h += b_k[:, None] * b_v[None, :]
|
235 |
+
b_dq = b_h * b_do[None, :]
|
236 |
+
b_dq = tl.sum(b_dq, axis=1) * scale
|
237 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k)
|
238 |
+
|
239 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
240 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
241 |
+
p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
242 |
+
p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
243 |
+
if USE_G:
|
244 |
+
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
|
245 |
+
if USE_GK:
|
246 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
247 |
+
if USE_GV:
|
248 |
+
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
249 |
+
|
250 |
+
# sync threads
|
251 |
+
tl.debug_barrier()
|
252 |
+
|
253 |
+
if HEAD_FIRST:
|
254 |
+
p_q = q + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
255 |
+
p_k = k + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
256 |
+
p_v = v + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
257 |
+
p_do = do + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
258 |
+
p_dk = dk + (i_v * B*H + i_nh) * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
259 |
+
p_dv = dv + (i_k * B*H + i_nh) * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
260 |
+
if USE_G:
|
261 |
+
p_g = g + i_nh * T + ((T - 1) if not REVERSE else 0)
|
262 |
+
if USE_GK:
|
263 |
+
p_gk = gk + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
264 |
+
if USE_GV:
|
265 |
+
p_gv = gv + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
266 |
+
else:
|
267 |
+
p_q = q + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
268 |
+
p_k = k + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
269 |
+
p_v = v + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
270 |
+
p_do = do + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
271 |
+
p_dk = dk + ((i_v * all + bos) + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
272 |
+
p_dv = dv + ((i_k * all + bos) + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
273 |
+
if USE_G:
|
274 |
+
p_g = g + (bos + ((T - 1) if not REVERSE else 0)) * H + i_h
|
275 |
+
if USE_GK:
|
276 |
+
p_gk = gk + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
277 |
+
if USE_GV:
|
278 |
+
p_gv = gv + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
279 |
+
|
280 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
281 |
+
if USE_FINAL_STATE_GRADIENT:
|
282 |
+
p_dht = dht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
283 |
+
b_dh += tl.load(p_dht, mask=mask_h, other=0).to(tl.float32)
|
284 |
+
|
285 |
+
for _ in range(T):
|
286 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
287 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
288 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
289 |
+
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
|
290 |
+
b_dh += b_q[:, None] * b_do[None, :]
|
291 |
+
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
|
292 |
+
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
|
293 |
+
if USE_G:
|
294 |
+
b_g = tl.load(p_g).to(tl.float32)
|
295 |
+
b_dh *= exp(b_g)
|
296 |
+
if USE_GK:
|
297 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
298 |
+
b_dh *= exp(b_gk)[:, None]
|
299 |
+
if USE_GV:
|
300 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
301 |
+
b_dh *= exp(b_gv)[None, :]
|
302 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k)
|
303 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v)
|
304 |
+
|
305 |
+
p_q += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
306 |
+
p_k += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
307 |
+
p_v += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
308 |
+
p_do += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
309 |
+
p_dk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
310 |
+
p_dv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
311 |
+
if USE_G:
|
312 |
+
p_g += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H)
|
313 |
+
if USE_GK:
|
314 |
+
p_gk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
315 |
+
if USE_GV:
|
316 |
+
p_gv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
317 |
+
|
318 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
319 |
+
p_dh0 = dh0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
320 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h)
|
321 |
+
|
322 |
+
|
323 |
+
def fused_recurrent_fwd(
|
324 |
+
q: torch.Tensor,
|
325 |
+
k: torch.Tensor,
|
326 |
+
v: torch.Tensor,
|
327 |
+
g: Optional[torch.Tensor] = None,
|
328 |
+
gk: Optional[torch.Tensor] = None,
|
329 |
+
gv: Optional[torch.Tensor] = None,
|
330 |
+
scale: Optional[float] = None,
|
331 |
+
initial_state: Optional[torch.Tensor] = None,
|
332 |
+
output_final_state: bool = False,
|
333 |
+
reverse: bool = False,
|
334 |
+
offsets: Optional[torch.LongTensor] = None,
|
335 |
+
head_first: bool = True
|
336 |
+
):
|
337 |
+
if head_first:
|
338 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
339 |
+
else:
|
340 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
341 |
+
N = B if offsets is None else len(offsets) - 1
|
342 |
+
BK, BV = min(K, 64), min(V, 64)
|
343 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
344 |
+
|
345 |
+
h0 = initial_state
|
346 |
+
if output_final_state:
|
347 |
+
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
|
348 |
+
else:
|
349 |
+
ht = None
|
350 |
+
o = q.new_empty(NK, *v.shape, dtype=torch.float32)
|
351 |
+
|
352 |
+
grid = (NV, NK, N * H)
|
353 |
+
fused_recurrent_fwd_kernel[grid](
|
354 |
+
q,
|
355 |
+
k,
|
356 |
+
v,
|
357 |
+
g,
|
358 |
+
gk,
|
359 |
+
gv,
|
360 |
+
o,
|
361 |
+
h0,
|
362 |
+
ht,
|
363 |
+
offsets,
|
364 |
+
scale,
|
365 |
+
T=T,
|
366 |
+
B=B,
|
367 |
+
H=H,
|
368 |
+
K=K,
|
369 |
+
V=V,
|
370 |
+
BK=BK,
|
371 |
+
BV=BV,
|
372 |
+
USE_G=g is not None,
|
373 |
+
USE_GK=gk is not None,
|
374 |
+
USE_GV=gv is not None,
|
375 |
+
REVERSE=reverse,
|
376 |
+
HEAD_FIRST=head_first
|
377 |
+
)
|
378 |
+
o = o.sum(0)
|
379 |
+
return o, ht
|
380 |
+
|
381 |
+
|
382 |
+
def fused_recurrent_bwd(
|
383 |
+
q: torch.Tensor,
|
384 |
+
k: torch.Tensor,
|
385 |
+
v: torch.Tensor,
|
386 |
+
g: Optional[torch.Tensor] = None,
|
387 |
+
gk: Optional[torch.Tensor] = None,
|
388 |
+
gv: Optional[torch.Tensor] = None,
|
389 |
+
o: Optional[torch.Tensor] = None,
|
390 |
+
do: Optional[torch.Tensor] = None,
|
391 |
+
dht: Optional[torch.Tensor] = None,
|
392 |
+
scale: Optional[float] = None,
|
393 |
+
initial_state: Optional[torch.Tensor] = None,
|
394 |
+
reverse: bool = False,
|
395 |
+
offsets: Optional[torch.LongTensor] = None,
|
396 |
+
head_first: bool = True
|
397 |
+
):
|
398 |
+
if head_first:
|
399 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
400 |
+
else:
|
401 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
402 |
+
N = B if offsets is None else len(offsets) - 1
|
403 |
+
|
404 |
+
BK, BV = min(K, 64), min(V, 64)
|
405 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
406 |
+
|
407 |
+
dq = q.new_empty(NV, *q.shape, dtype=torch.float32)
|
408 |
+
dk = q.new_empty(NV, *k.shape, dtype=torch.float32)
|
409 |
+
dv = q.new_empty(NK, *v.shape, dtype=torch.float32)
|
410 |
+
h0 = initial_state
|
411 |
+
dh0 = torch.empty_like(initial_state) if initial_state is not None else None
|
412 |
+
|
413 |
+
grid = (NV, NK, N * H)
|
414 |
+
fused_recurrent_bwd_kernel[grid](
|
415 |
+
q,
|
416 |
+
k,
|
417 |
+
v,
|
418 |
+
g,
|
419 |
+
gk,
|
420 |
+
gv,
|
421 |
+
h0,
|
422 |
+
do,
|
423 |
+
dq,
|
424 |
+
dk,
|
425 |
+
dv,
|
426 |
+
dht,
|
427 |
+
dh0,
|
428 |
+
offsets,
|
429 |
+
scale,
|
430 |
+
B=B,
|
431 |
+
T=T,
|
432 |
+
H=H,
|
433 |
+
K=K,
|
434 |
+
V=V,
|
435 |
+
BK=BK,
|
436 |
+
BV=BV,
|
437 |
+
USE_G=g is not None,
|
438 |
+
USE_GK=gk is not None,
|
439 |
+
USE_GV=gv is not None,
|
440 |
+
REVERSE=reverse,
|
441 |
+
HEAD_FIRST=head_first
|
442 |
+
)
|
443 |
+
dq = dq.sum(0)
|
444 |
+
dk = dk.sum(0)
|
445 |
+
dv = dv.sum(0)
|
446 |
+
dg, dgk, dgv = None, None, None
|
447 |
+
if g is not None:
|
448 |
+
dg = chunk_global_cumsum(
|
449 |
+
(dq * q.float() - dk * k.float()).sum(-1),
|
450 |
+
reverse=not reverse,
|
451 |
+
offsets=offsets,
|
452 |
+
head_first=head_first
|
453 |
+
)
|
454 |
+
if gk is not None:
|
455 |
+
dgk = chunk_global_cumsum(
|
456 |
+
dq * q.float() - dk * k.float(),
|
457 |
+
reverse=not reverse,
|
458 |
+
offsets=offsets,
|
459 |
+
head_first=head_first
|
460 |
+
)
|
461 |
+
if gv is not None:
|
462 |
+
dgv = chunk_global_cumsum(
|
463 |
+
do.float() * o.float() - dv * v.float(),
|
464 |
+
reverse=not reverse,
|
465 |
+
offsets=offsets,
|
466 |
+
head_first=head_first
|
467 |
+
)
|
468 |
+
|
469 |
+
return dq, dk, dv, dg, dgk, dgv, dh0
|
470 |
+
|
471 |
+
|
472 |
+
class FusedRecurrentFunction(torch.autograd.Function):
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
@input_guard
|
476 |
+
@autocast_custom_fwd
|
477 |
+
def forward(
|
478 |
+
ctx,
|
479 |
+
q: torch.Tensor,
|
480 |
+
k: torch.Tensor,
|
481 |
+
v: torch.Tensor,
|
482 |
+
g: Optional[torch.Tensor] = None,
|
483 |
+
gk: Optional[torch.Tensor] = None,
|
484 |
+
gv: Optional[torch.Tensor] = None,
|
485 |
+
scale: Optional[float] = None,
|
486 |
+
initial_state: Optional[torch.Tensor] = None,
|
487 |
+
output_final_state: bool = False,
|
488 |
+
reverse: bool = False,
|
489 |
+
offsets: Optional[torch.LongTensor] = None,
|
490 |
+
head_first: bool = True
|
491 |
+
):
|
492 |
+
o, ht = fused_recurrent_fwd(
|
493 |
+
q=q,
|
494 |
+
k=k,
|
495 |
+
v=v,
|
496 |
+
g=g,
|
497 |
+
gk=gk,
|
498 |
+
gv=gv,
|
499 |
+
scale=scale,
|
500 |
+
initial_state=initial_state,
|
501 |
+
output_final_state=output_final_state,
|
502 |
+
reverse=reverse,
|
503 |
+
offsets=offsets,
|
504 |
+
head_first=head_first
|
505 |
+
)
|
506 |
+
ctx.save_for_backward(q, k, v, g, gk, gv, initial_state, o)
|
507 |
+
ctx.scale = scale
|
508 |
+
ctx.reverse = reverse
|
509 |
+
ctx.offsets = offsets
|
510 |
+
ctx.head_first = head_first
|
511 |
+
return o.to(q.dtype), ht
|
512 |
+
|
513 |
+
@staticmethod
|
514 |
+
@input_guard
|
515 |
+
@autocast_custom_bwd
|
516 |
+
def backward(ctx, do, dht):
|
517 |
+
q, k, v, g, gk, gv, initial_state, o = ctx.saved_tensors
|
518 |
+
# not supported yet.
|
519 |
+
if dht is not None:
|
520 |
+
if not dht.eq(0).all():
|
521 |
+
if g is not None:
|
522 |
+
assert g.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
523 |
+
if gk is not None:
|
524 |
+
assert gk.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
525 |
+
if gv is not None:
|
526 |
+
assert gv.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
527 |
+
dq, dk, dv, dg, dgk, dgv, dh0 = fused_recurrent_bwd(
|
528 |
+
q=q,
|
529 |
+
k=k,
|
530 |
+
v=v,
|
531 |
+
g=g,
|
532 |
+
gk=gk,
|
533 |
+
gv=gv,
|
534 |
+
o=o,
|
535 |
+
do=do,
|
536 |
+
dht=dht,
|
537 |
+
scale=ctx.scale,
|
538 |
+
initial_state=initial_state,
|
539 |
+
reverse=ctx.reverse,
|
540 |
+
offsets=ctx.offsets,
|
541 |
+
head_first=ctx.head_first
|
542 |
+
)
|
543 |
+
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dg, dgk, dgv, None, dh0, None, None, None, None
|
544 |
+
|
545 |
+
|
546 |
+
def fused_recurrent(
|
547 |
+
q: torch.Tensor,
|
548 |
+
k: torch.Tensor,
|
549 |
+
v: torch.Tensor,
|
550 |
+
g: Optional[torch.Tensor] = None,
|
551 |
+
gk: Optional[torch.Tensor] = None,
|
552 |
+
gv: Optional[torch.Tensor] = None,
|
553 |
+
scale: Optional[float] = None,
|
554 |
+
initial_state: Optional[torch.Tensor] = None,
|
555 |
+
output_final_state: bool = False,
|
556 |
+
reverse: bool = False,
|
557 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
558 |
+
head_first: bool = True
|
559 |
+
):
|
560 |
+
if scale is None:
|
561 |
+
scale = k.shape[-1] ** -0.5
|
562 |
+
return FusedRecurrentFunction.apply(
|
563 |
+
q,
|
564 |
+
k,
|
565 |
+
v,
|
566 |
+
g,
|
567 |
+
gk,
|
568 |
+
gv,
|
569 |
+
scale,
|
570 |
+
initial_state,
|
571 |
+
output_final_state,
|
572 |
+
reverse,
|
573 |
+
cu_seqlens,
|
574 |
+
head_first
|
575 |
+
)
|
fla/ops/common/utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import triton
|
6 |
+
import triton.language as tl
|
7 |
+
|
8 |
+
from fla.utils import tensor_cache
|
9 |
+
|
10 |
+
|
11 |
+
@triton.autotune(
|
12 |
+
configs=[
|
13 |
+
triton.Config({}, num_warps=num_warps)
|
14 |
+
for num_warps in [4, 8, 16, 32]
|
15 |
+
],
|
16 |
+
key=['B'],
|
17 |
+
)
|
18 |
+
@triton.jit
|
19 |
+
def prepare_position_ids_kernel(
|
20 |
+
y,
|
21 |
+
offsets,
|
22 |
+
B: tl.constexpr
|
23 |
+
):
|
24 |
+
i_n = tl.program_id(0)
|
25 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
26 |
+
T = eos - bos
|
27 |
+
|
28 |
+
o = tl.arange(0, B)
|
29 |
+
for i in range(0, tl.cdiv(T, B) * B, B):
|
30 |
+
o_i = o + i
|
31 |
+
tl.store(y + bos + o_i, o_i, o_i < T)
|
32 |
+
|
33 |
+
|
34 |
+
@tensor_cache
|
35 |
+
def prepare_lens(offsets: torch.LongTensor) -> torch.LongTensor:
|
36 |
+
return offsets[1:] - offsets[:-1]
|
37 |
+
|
38 |
+
|
39 |
+
@tensor_cache
|
40 |
+
def prepare_position_ids(offsets: torch.LongTensor) -> torch.LongTensor:
|
41 |
+
return torch.cat([torch.arange(n, dtype=offsets.dtype, device=offsets.device) for n in prepare_lens(offsets).unbind()])
|
42 |
+
|
43 |
+
|
44 |
+
@tensor_cache
|
45 |
+
def prepare_sequence_ids(position_ids: torch.LongTensor) -> torch.LongTensor:
|
46 |
+
return position_ids.eq(0).cumsum(0) - 1
|
47 |
+
|
48 |
+
|
49 |
+
@tensor_cache
|
50 |
+
def prepare_token_indices(offsets: torch.LongTensor) -> torch.LongTensor:
|
51 |
+
position_ids = prepare_position_ids(offsets)
|
52 |
+
return torch.stack([prepare_sequence_ids(position_ids), position_ids], 1).to(offsets)
|
53 |
+
|
54 |
+
|
55 |
+
@tensor_cache
|
56 |
+
def prepare_chunk_indices(
|
57 |
+
offsets: torch.LongTensor,
|
58 |
+
chunk_size: int
|
59 |
+
) -> torch.LongTensor:
|
60 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(prepare_lens(offsets), chunk_size).tolist()])
|
61 |
+
return torch.stack([prepare_sequence_ids(indices), indices], 1).to(offsets)
|
62 |
+
|
63 |
+
|
64 |
+
@tensor_cache
|
65 |
+
def prepare_chunk_offsets(
|
66 |
+
offsets: torch.LongTensor,
|
67 |
+
chunk_size: int
|
68 |
+
) -> torch.LongTensor:
|
69 |
+
return torch.cat([offsets.new_tensor([0]), triton.cdiv(prepare_lens(offsets), chunk_size)]).cumsum(-1)
|
fla/ops/forgetting_attn/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .parallel import parallel_forgetting_attn
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
'parallel_forgetting_attn'
|
7 |
+
]
|
fla/ops/forgetting_attn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (266 Bytes). View file
|
|
fla/ops/forgetting_attn/__pycache__/parallel.cpython-311.pyc
ADDED
Binary file (40.1 kB). View file
|
|
fla/ops/forgetting_attn/parallel.py
ADDED
@@ -0,0 +1,708 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from einops import rearrange, reduce
|
10 |
+
|
11 |
+
from fla.ops.common.utils import prepare_chunk_indices
|
12 |
+
from fla.ops.utils import chunk_global_cumsum, chunk_local_cumsum
|
13 |
+
from fla.ops.utils.op import div, exp, log
|
14 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard
|
15 |
+
|
16 |
+
|
17 |
+
@triton.heuristics({
|
18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
19 |
+
})
|
20 |
+
@triton.autotune(
|
21 |
+
configs=[
|
22 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
23 |
+
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
|
24 |
+
for num_stages in [2, 3, 4, 5]
|
25 |
+
],
|
26 |
+
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
|
27 |
+
)
|
28 |
+
@triton.jit
|
29 |
+
def parallel_forgetting_attn_fwd_kernel(
|
30 |
+
q,
|
31 |
+
k,
|
32 |
+
v,
|
33 |
+
g,
|
34 |
+
o,
|
35 |
+
lse,
|
36 |
+
scale,
|
37 |
+
offsets,
|
38 |
+
indices,
|
39 |
+
T,
|
40 |
+
B: tl.constexpr,
|
41 |
+
H: tl.constexpr,
|
42 |
+
HQ: tl.constexpr,
|
43 |
+
G: tl.constexpr,
|
44 |
+
K: tl.constexpr,
|
45 |
+
V: tl.constexpr,
|
46 |
+
BT: tl.constexpr,
|
47 |
+
BS: tl.constexpr,
|
48 |
+
BK: tl.constexpr,
|
49 |
+
BV: tl.constexpr,
|
50 |
+
USE_OFFSETS: tl.constexpr
|
51 |
+
):
|
52 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
53 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
54 |
+
i_h = i_hq // G
|
55 |
+
|
56 |
+
if USE_OFFSETS:
|
57 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
58 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
59 |
+
T = eos - bos
|
60 |
+
else:
|
61 |
+
i_n = i_b
|
62 |
+
bos, eos = i_n * T, i_n * T + T
|
63 |
+
|
64 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
65 |
+
p_g = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
66 |
+
p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
67 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
68 |
+
|
69 |
+
# the Q block is kept in the shared memory throughout the whole kernel
|
70 |
+
# [BT, BK]
|
71 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
72 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
73 |
+
# [BT,]
|
74 |
+
b_gq = tl.load(p_g, boundary_check=(0,)).to(tl.float32)
|
75 |
+
# [BT, BV]
|
76 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
77 |
+
|
78 |
+
b_m = tl.full([BT], float('-inf'), dtype=tl.float32)
|
79 |
+
b_acc = tl.zeros([BT], dtype=tl.float32)
|
80 |
+
|
81 |
+
# [BT]
|
82 |
+
o_q = i_t * BT + tl.arange(0, BT)
|
83 |
+
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
|
84 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
85 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
86 |
+
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
87 |
+
|
88 |
+
# [BS]
|
89 |
+
o_k = i_s + tl.arange(0, BS)
|
90 |
+
# [BK, BS]
|
91 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
92 |
+
# [BS, BV]
|
93 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
94 |
+
# [BS,]
|
95 |
+
b_gk = tl.load(p_gk, boundary_check=(0,))
|
96 |
+
# [BT, BS]
|
97 |
+
b_s = tl.dot(b_q, b_k) + b_gq[:, None] - b_gk[None, :]
|
98 |
+
b_s = tl.where(o_q[:, None] >= o_k[None, :], b_s, float('-inf'))
|
99 |
+
|
100 |
+
# [BT]
|
101 |
+
b_m, b_mp = tl.maximum(b_m, tl.max(b_s, 1)), b_m
|
102 |
+
b_r = exp(b_mp - b_m)
|
103 |
+
# [BT, BS]
|
104 |
+
b_p = exp(b_s - b_m[:, None])
|
105 |
+
# [BT]
|
106 |
+
b_acc = b_acc * b_r + tl.sum(b_p, 1)
|
107 |
+
# [BT, BV]
|
108 |
+
b_o = b_o * b_r[:, None] + tl.dot(b_p.to(b_q.dtype), b_v)
|
109 |
+
|
110 |
+
b_mp = b_m
|
111 |
+
|
112 |
+
for i_s in range(i_t * BT - BS, -BS, -BS):
|
113 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
114 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
115 |
+
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
116 |
+
|
117 |
+
# [BK, BS]
|
118 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
119 |
+
# [BS, BV]
|
120 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
121 |
+
# [BS,]
|
122 |
+
b_gk = tl.load(p_gk, boundary_check=(0,)).to(tl.float32)
|
123 |
+
|
124 |
+
b_gn = tl.load(g + (bos + min(i_s + BS, T) - 1) * HQ + i_hq).to(tl.float32)
|
125 |
+
b_gp = tl.load(g + (bos + i_s - 1) * HQ + i_hq).to(tl.float32) if i_s % BT > 0 else 0.
|
126 |
+
# [BT, BS]
|
127 |
+
b_s = tl.dot(b_q, b_k) + b_gq[:, None] + (b_gn - b_gk)[None, :]
|
128 |
+
|
129 |
+
b_gq += b_gn - b_gp
|
130 |
+
b_m, b_mp = tl.maximum(b_m, tl.max(b_s, 1)), b_m
|
131 |
+
b_r = exp(b_mp - b_m)
|
132 |
+
# [BT, BS]
|
133 |
+
b_p = exp(b_s - b_m[:, None])
|
134 |
+
# [BT]
|
135 |
+
b_acc = b_acc * b_r + tl.sum(b_p, 1)
|
136 |
+
# [BT, BV]
|
137 |
+
b_o = b_o * b_r[:, None] + tl.dot(b_p.to(b_q.dtype), b_v)
|
138 |
+
|
139 |
+
b_mp = b_m
|
140 |
+
|
141 |
+
b_o = div(b_o, b_acc[:, None])
|
142 |
+
b_m += log(b_acc)
|
143 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
144 |
+
tl.store(p_lse, b_m.to(p_lse.dtype.element_ty), boundary_check=(0,))
|
145 |
+
|
146 |
+
|
147 |
+
@triton.jit
|
148 |
+
def parallel_forgetting_attn_bwd_kernel_preprocess(
|
149 |
+
o,
|
150 |
+
do,
|
151 |
+
delta,
|
152 |
+
B: tl.constexpr,
|
153 |
+
V: tl.constexpr
|
154 |
+
):
|
155 |
+
i_n = tl.program_id(0)
|
156 |
+
o_d = tl.arange(0, B)
|
157 |
+
m_d = o_d < V
|
158 |
+
|
159 |
+
b_o = tl.load(o + i_n * V + o_d, mask=m_d, other=0)
|
160 |
+
b_do = tl.load(do + i_n * V + o_d, mask=m_d, other=0).to(tl.float32)
|
161 |
+
b_delta = tl.sum(b_o * b_do)
|
162 |
+
|
163 |
+
tl.store(delta + i_n, b_delta.to(delta.dtype.element_ty))
|
164 |
+
|
165 |
+
|
166 |
+
@triton.heuristics({
|
167 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
168 |
+
})
|
169 |
+
@triton.autotune(
|
170 |
+
configs=[
|
171 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
172 |
+
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
|
173 |
+
for num_stages in [2, 3, 4]
|
174 |
+
],
|
175 |
+
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
|
176 |
+
)
|
177 |
+
@triton.jit(do_not_specialize=['T'])
|
178 |
+
def parallel_forgetting_attn_bwd_kernel_dq(
|
179 |
+
q,
|
180 |
+
k,
|
181 |
+
v,
|
182 |
+
g,
|
183 |
+
lse,
|
184 |
+
delta,
|
185 |
+
do,
|
186 |
+
dq,
|
187 |
+
dg,
|
188 |
+
scale,
|
189 |
+
offsets,
|
190 |
+
indices,
|
191 |
+
T,
|
192 |
+
B: tl.constexpr,
|
193 |
+
H: tl.constexpr,
|
194 |
+
HQ: tl.constexpr,
|
195 |
+
G: tl.constexpr,
|
196 |
+
K: tl.constexpr,
|
197 |
+
V: tl.constexpr,
|
198 |
+
BT: tl.constexpr,
|
199 |
+
BS: tl.constexpr,
|
200 |
+
BK: tl.constexpr,
|
201 |
+
BV: tl.constexpr,
|
202 |
+
USE_OFFSETS: tl.constexpr
|
203 |
+
):
|
204 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
205 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
206 |
+
i_h = i_hq // G
|
207 |
+
|
208 |
+
if USE_OFFSETS:
|
209 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
210 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
211 |
+
T = eos - bos
|
212 |
+
else:
|
213 |
+
i_n = i_b
|
214 |
+
bos, eos = i_n * T, i_n * T + T
|
215 |
+
|
216 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
217 |
+
p_g = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
218 |
+
p_dq = tl.make_block_ptr(dq + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
219 |
+
p_dg = tl.make_block_ptr(dg + (bos * HQ + i_hq), (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
220 |
+
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
221 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
222 |
+
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
223 |
+
|
224 |
+
# [BT, BK]
|
225 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
226 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
227 |
+
# [BT, BV]
|
228 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
229 |
+
# [BT]
|
230 |
+
b_gq = tl.load(p_g, boundary_check=(0,)).to(tl.float32)
|
231 |
+
b_lse = tl.load(p_lse, boundary_check=(0,))
|
232 |
+
b_delta = tl.load(p_delta, boundary_check=(0,))
|
233 |
+
|
234 |
+
# [BT]
|
235 |
+
o_q = i_t * BT + tl.arange(0, BT)
|
236 |
+
# [BT, BK]
|
237 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
238 |
+
# [BT]
|
239 |
+
b_dg = tl.zeros([BT,], dtype=tl.float32)
|
240 |
+
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
|
241 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
242 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_s), (BV, BS), (0, 1))
|
243 |
+
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
244 |
+
|
245 |
+
# [BS]
|
246 |
+
o_k = i_s + tl.arange(0, BS)
|
247 |
+
# [BK, BS]
|
248 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
249 |
+
# [BV, BS]
|
250 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
251 |
+
# [BS,]
|
252 |
+
b_gk = tl.load(p_gk, boundary_check=(0,))
|
253 |
+
# [BT, BS]
|
254 |
+
b_s = tl.dot(b_q, b_k) + (b_gq - b_lse)[:, None] - b_gk[None, :]
|
255 |
+
b_p = exp(tl.where(o_q[:, None] >= o_k[None, :], b_s, float('-inf')))
|
256 |
+
|
257 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
258 |
+
b_dp = tl.dot(b_do, b_v)
|
259 |
+
b_ds = b_p * (b_dp.to(tl.float32) - b_delta[:, None])
|
260 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
261 |
+
b_dq += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_k))
|
262 |
+
# [BT]
|
263 |
+
b_dg += tl.sum(b_ds, 1)
|
264 |
+
|
265 |
+
for i_s in range(i_t * BT - BS, -BS, -BS):
|
266 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
|
267 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_s), (BV, BS), (0, 1))
|
268 |
+
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
269 |
+
|
270 |
+
# [BK, BS]
|
271 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
272 |
+
# [BV, BS]
|
273 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
274 |
+
# [BS,]
|
275 |
+
b_gk = tl.load(p_gk, boundary_check=(0,)).to(tl.float32)
|
276 |
+
|
277 |
+
b_gn = tl.load(g + (bos + min(i_s + BS, T) - 1) * HQ + i_hq).to(tl.float32)
|
278 |
+
b_gp = tl.load(g + (bos + i_s - 1) * HQ + i_hq).to(tl.float32) if i_s % BT > 0 else 0.
|
279 |
+
# [BT, BS]
|
280 |
+
b_s = tl.dot(b_q, b_k) + (b_gq - b_lse)[:, None] + (b_gn - b_gk)[None, :]
|
281 |
+
b_p = exp(b_s)
|
282 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
283 |
+
b_dp = tl.dot(b_do, b_v)
|
284 |
+
b_ds = b_p * (b_dp - b_delta[:, None])
|
285 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
286 |
+
b_dq += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_k))
|
287 |
+
# [BT]
|
288 |
+
b_dg += tl.sum(b_ds, 1)
|
289 |
+
|
290 |
+
b_gq += b_gn - b_gp
|
291 |
+
|
292 |
+
b_dq *= scale
|
293 |
+
|
294 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
295 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
|
296 |
+
|
297 |
+
|
298 |
+
@triton.heuristics({
|
299 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
300 |
+
})
|
301 |
+
@triton.autotune(
|
302 |
+
configs=[
|
303 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
304 |
+
for num_warps in [1, 2, 4, 8]
|
305 |
+
for num_stages in [2, 3, 4]
|
306 |
+
],
|
307 |
+
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
|
308 |
+
)
|
309 |
+
@triton.jit(do_not_specialize=['T'])
|
310 |
+
def parallel_forgetting_attn_bwd_kernel_dkv(
|
311 |
+
q,
|
312 |
+
k,
|
313 |
+
v,
|
314 |
+
g,
|
315 |
+
lse,
|
316 |
+
delta,
|
317 |
+
do,
|
318 |
+
dk,
|
319 |
+
dv,
|
320 |
+
dg,
|
321 |
+
offsets,
|
322 |
+
indices,
|
323 |
+
scale,
|
324 |
+
T,
|
325 |
+
B: tl.constexpr,
|
326 |
+
H: tl.constexpr,
|
327 |
+
HQ: tl.constexpr,
|
328 |
+
G: tl.constexpr,
|
329 |
+
K: tl.constexpr,
|
330 |
+
V: tl.constexpr,
|
331 |
+
BT: tl.constexpr,
|
332 |
+
BS: tl.constexpr,
|
333 |
+
BK: tl.constexpr,
|
334 |
+
BV: tl.constexpr,
|
335 |
+
USE_OFFSETS: tl.constexpr
|
336 |
+
):
|
337 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
338 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
339 |
+
i_h = i_hq // G
|
340 |
+
|
341 |
+
if USE_OFFSETS:
|
342 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
343 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
344 |
+
T = eos - bos
|
345 |
+
else:
|
346 |
+
i_n = i_b
|
347 |
+
bos, eos = i_n * T, i_n * T + T
|
348 |
+
|
349 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
350 |
+
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
351 |
+
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
352 |
+
p_dk = tl.make_block_ptr(dk + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
|
353 |
+
p_dv = tl.make_block_ptr(dv + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
354 |
+
p_dg = tl.make_block_ptr(dg + (bos * HQ + i_hq), (T,), (HQ,), (i_t * BT,), (BT,), (0,))
|
355 |
+
|
356 |
+
# [BT, BK]
|
357 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
358 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
359 |
+
# [BT, BV]
|
360 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
361 |
+
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
|
362 |
+
# [BT]
|
363 |
+
b_gk = tl.load(p_gk, boundary_check=(0,)).to(tl.float32)
|
364 |
+
b_dg = tl.zeros([BT,], dtype=tl.float32)
|
365 |
+
|
366 |
+
o_k = i_t * BT + tl.arange(0, BT)
|
367 |
+
m_k = o_k < T
|
368 |
+
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
|
369 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_s, 0), (BS, BK), (1, 0))
|
370 |
+
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
371 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
372 |
+
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
373 |
+
p_gq = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
374 |
+
|
375 |
+
# [BS]
|
376 |
+
o_q = i_s + tl.arange(0, BS)
|
377 |
+
# [BS, BK]
|
378 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
379 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
380 |
+
# [BS, BV]
|
381 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
382 |
+
# [BS]
|
383 |
+
b_lse = tl.load(p_lse, boundary_check=(0,))
|
384 |
+
b_delta = tl.load(p_delta, boundary_check=(0,))
|
385 |
+
b_gq = tl.load(p_gq, boundary_check=(0,)).to(tl.float32)
|
386 |
+
|
387 |
+
m_q = o_q < T
|
388 |
+
m_s = (o_k[:, None] <= o_q[None, :]) & m_k[:, None] & m_q[None, :]
|
389 |
+
# [BT, BS]
|
390 |
+
b_s = tl.dot(b_k, tl.trans(b_q)) - b_gk[:, None] + (b_gq - b_lse)[None, :]
|
391 |
+
b_p = tl.where(m_s, exp(b_s), 0)
|
392 |
+
# [BT, BS] @ [BS, BV] -> [BT, BV]
|
393 |
+
b_dv += tl.dot(b_p.to(b_do.dtype), b_do)
|
394 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
395 |
+
b_dp = tl.dot(b_v, tl.trans(b_do))
|
396 |
+
# [BT, BS]
|
397 |
+
b_ds = b_p * (b_dp - b_delta[None, :])
|
398 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
399 |
+
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
|
400 |
+
# [BT]
|
401 |
+
b_dg -= tl.sum(b_ds, 1)
|
402 |
+
|
403 |
+
b_gk -= tl.load(g + (bos + min((i_t + 1) * BT, T) - 1) * HQ + i_hq).to(tl.float32)
|
404 |
+
for i_s in range((i_t + 1) * BT, T, BS):
|
405 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_s, 0), (BS, BK), (1, 0))
|
406 |
+
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
|
407 |
+
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
408 |
+
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
409 |
+
p_gq = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
|
410 |
+
|
411 |
+
# [BS]
|
412 |
+
o_q = i_s + tl.arange(0, BS)
|
413 |
+
# [BS, BK]
|
414 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
415 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
416 |
+
# [BS, BV]
|
417 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
418 |
+
# [BS]
|
419 |
+
b_lse = tl.load(p_lse, boundary_check=(0,))
|
420 |
+
b_delta = tl.load(p_delta, boundary_check=(0,))
|
421 |
+
b_gq = tl.load(p_gq, boundary_check=(0,)).to(tl.float32)
|
422 |
+
|
423 |
+
b_gn = tl.load(g + (bos + min(i_s + BS, T) - 1) * HQ + i_hq).to(tl.float32)
|
424 |
+
b_gp = tl.load(g + (bos + i_s - 1) * HQ + i_hq).to(tl.float32) if i_s % BT > 0 else 0.
|
425 |
+
# [BT, BS]
|
426 |
+
b_s = tl.dot(b_k, tl.trans(b_q)) - (b_gk + b_gp)[:, None] + (b_gq - b_lse)[None, :]
|
427 |
+
b_p = exp(b_s)
|
428 |
+
# [BT, BS] @ [BS, BV] -> [BT, BV]
|
429 |
+
b_dv += tl.dot(b_p.to(b_do.dtype), b_do)
|
430 |
+
# [BT, BV] @ [BV, BS] -> [BT, BS]
|
431 |
+
b_dp = tl.dot(b_v, tl.trans(b_do))
|
432 |
+
# [BT, BS]
|
433 |
+
b_ds = b_p * (b_dp - b_delta[None, :])
|
434 |
+
# [BT, BS] @ [BS, BK] -> [BT, BK]
|
435 |
+
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
|
436 |
+
# [BT]
|
437 |
+
b_dg -= tl.sum(b_ds, 1)
|
438 |
+
|
439 |
+
b_gk -= b_gn - b_gp
|
440 |
+
|
441 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
442 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
443 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
|
444 |
+
|
445 |
+
|
446 |
+
def parallel_forgetting_attn_fwd(
|
447 |
+
q: torch.Tensor,
|
448 |
+
k: torch.Tensor,
|
449 |
+
v: torch.Tensor,
|
450 |
+
g: torch.Tensor,
|
451 |
+
scale: float,
|
452 |
+
chunk_size: int = 128,
|
453 |
+
offsets: Optional[torch.LongTensor] = None,
|
454 |
+
indices: Optional[torch.LongTensor] = None,
|
455 |
+
):
|
456 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
457 |
+
HQ = q.shape[2]
|
458 |
+
G = HQ // H
|
459 |
+
BT = chunk_size
|
460 |
+
BK = max(16, triton.next_power_of_2(K))
|
461 |
+
assert V <= 256, "V must be less than or equal to 256"
|
462 |
+
if check_shared_mem('hopper'):
|
463 |
+
BS = min(64, max(16, triton.next_power_of_2(T)))
|
464 |
+
else:
|
465 |
+
BS = min(32, max(16, triton.next_power_of_2(T)))
|
466 |
+
BV = min(256, max(16, triton.next_power_of_2(V)))
|
467 |
+
NV = triton.cdiv(V, BV)
|
468 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
469 |
+
|
470 |
+
o = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device)
|
471 |
+
lse = torch.empty(B, T, HQ, dtype=torch.float, device=q.device)
|
472 |
+
|
473 |
+
grid = (NV, NT, B * HQ)
|
474 |
+
parallel_forgetting_attn_fwd_kernel[grid](
|
475 |
+
q=q,
|
476 |
+
k=k,
|
477 |
+
v=v,
|
478 |
+
g=g,
|
479 |
+
o=o,
|
480 |
+
lse=lse,
|
481 |
+
scale=scale,
|
482 |
+
offsets=offsets,
|
483 |
+
indices=indices,
|
484 |
+
B=B,
|
485 |
+
T=T,
|
486 |
+
H=H,
|
487 |
+
HQ=HQ,
|
488 |
+
G=G,
|
489 |
+
K=K,
|
490 |
+
V=V,
|
491 |
+
BT=BT,
|
492 |
+
BS=BS,
|
493 |
+
BK=BK,
|
494 |
+
BV=BV,
|
495 |
+
)
|
496 |
+
return o, lse
|
497 |
+
|
498 |
+
|
499 |
+
def parallel_forgetting_attn_bwd_preprocess(
|
500 |
+
o: torch.Tensor,
|
501 |
+
do: torch.Tensor
|
502 |
+
):
|
503 |
+
V = o.shape[-1]
|
504 |
+
delta = torch.empty_like(o[..., 0], dtype=torch.float)
|
505 |
+
parallel_forgetting_attn_bwd_kernel_preprocess[(delta.numel(),)](
|
506 |
+
o=o,
|
507 |
+
do=do,
|
508 |
+
delta=delta,
|
509 |
+
B=triton.next_power_of_2(V),
|
510 |
+
V=V,
|
511 |
+
)
|
512 |
+
return delta
|
513 |
+
|
514 |
+
|
515 |
+
def parallel_forgetting_attn_bwd(
|
516 |
+
q: torch.Tensor,
|
517 |
+
k: torch.Tensor,
|
518 |
+
v: torch.Tensor,
|
519 |
+
g: torch.Tensor,
|
520 |
+
o: torch.Tensor,
|
521 |
+
lse: torch.Tensor,
|
522 |
+
do: torch.Tensor,
|
523 |
+
scale: float = None,
|
524 |
+
chunk_size: int = 128,
|
525 |
+
offsets: Optional[torch.LongTensor] = None,
|
526 |
+
indices: Optional[torch.LongTensor] = None,
|
527 |
+
):
|
528 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
529 |
+
HQ = q.shape[2]
|
530 |
+
G = HQ // H
|
531 |
+
BT = chunk_size
|
532 |
+
BS = min(32, max(16, triton.next_power_of_2(T)))
|
533 |
+
BK = max(16, triton.next_power_of_2(K))
|
534 |
+
BV = max(16, triton.next_power_of_2(V))
|
535 |
+
NV = triton.cdiv(V, BV)
|
536 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
537 |
+
|
538 |
+
delta = parallel_forgetting_attn_bwd_preprocess(o, do)
|
539 |
+
dq = q.new_empty(B, T, HQ, K, dtype=q.dtype)
|
540 |
+
dk = q.new_empty(B, T, HQ, K, dtype=k.dtype if H == HQ else torch.float)
|
541 |
+
dv = q.new_empty(B, T, HQ, V, dtype=v.dtype if H == HQ else torch.float)
|
542 |
+
dg = q.new_empty(g.shape, dtype=torch.float)
|
543 |
+
# NOTE: the original `dg` can be destroyed during autotuning
|
544 |
+
# this is [a known triton issue](https://github.com/triton-lang/triton/issues/5082), which will be fixed in 3.3 (?)
|
545 |
+
# so we need to make a copy of `dg`
|
546 |
+
dg2 = q.new_empty(g.shape, dtype=torch.float)
|
547 |
+
grid = (NV, NT, B * HQ)
|
548 |
+
parallel_forgetting_attn_bwd_kernel_dq[grid](
|
549 |
+
q=q,
|
550 |
+
k=k,
|
551 |
+
v=v,
|
552 |
+
g=g,
|
553 |
+
lse=lse,
|
554 |
+
delta=delta,
|
555 |
+
do=do,
|
556 |
+
dq=dq,
|
557 |
+
dg=dg,
|
558 |
+
offsets=offsets,
|
559 |
+
indices=indices,
|
560 |
+
scale=scale,
|
561 |
+
T=T,
|
562 |
+
B=B,
|
563 |
+
H=H,
|
564 |
+
HQ=HQ,
|
565 |
+
G=G,
|
566 |
+
K=K,
|
567 |
+
V=V,
|
568 |
+
BT=BT,
|
569 |
+
BS=BS,
|
570 |
+
BK=BK,
|
571 |
+
BV=BV
|
572 |
+
)
|
573 |
+
parallel_forgetting_attn_bwd_kernel_dkv[grid](
|
574 |
+
q=q,
|
575 |
+
k=k,
|
576 |
+
v=v,
|
577 |
+
g=g,
|
578 |
+
lse=lse,
|
579 |
+
delta=delta,
|
580 |
+
do=do,
|
581 |
+
dk=dk,
|
582 |
+
dv=dv,
|
583 |
+
dg=dg2,
|
584 |
+
offsets=offsets,
|
585 |
+
indices=indices,
|
586 |
+
scale=scale,
|
587 |
+
T=T,
|
588 |
+
B=B,
|
589 |
+
H=H,
|
590 |
+
HQ=HQ,
|
591 |
+
G=G,
|
592 |
+
K=K,
|
593 |
+
V=V,
|
594 |
+
BT=BT,
|
595 |
+
BS=BS,
|
596 |
+
BK=BK,
|
597 |
+
BV=BV
|
598 |
+
)
|
599 |
+
dk = reduce(dk, 'b t (h g) k -> b t h k', g=G, reduction='sum')
|
600 |
+
dv = reduce(dv, 'b t (h g) v -> b t h v', g=G, reduction='sum')
|
601 |
+
dg = dg.add_(dg2)
|
602 |
+
return dq, dk, dv, dg
|
603 |
+
|
604 |
+
|
605 |
+
@torch.compile
|
606 |
+
class ParallelForgettingAttentionFunction(torch.autograd.Function):
|
607 |
+
|
608 |
+
@staticmethod
|
609 |
+
@input_guard
|
610 |
+
@autocast_custom_fwd
|
611 |
+
def forward(ctx, q, k, v, g, scale, offsets):
|
612 |
+
ctx.dtype = q.dtype
|
613 |
+
if check_shared_mem('hopper'):
|
614 |
+
chunk_size = min(128, max(16, triton.next_power_of_2(q.shape[1])))
|
615 |
+
else:
|
616 |
+
chunk_size = min(64, max(16, triton.next_power_of_2(q.shape[1])))
|
617 |
+
# 2-d indices denoting the offsets of chunks in each sequence
|
618 |
+
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
|
619 |
+
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
|
620 |
+
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
|
621 |
+
indices = prepare_chunk_indices(offsets, chunk_size) if offsets is not None else None
|
622 |
+
|
623 |
+
g = chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=False)
|
624 |
+
o, lse = parallel_forgetting_attn_fwd(
|
625 |
+
q=q,
|
626 |
+
k=k,
|
627 |
+
v=v,
|
628 |
+
g=g,
|
629 |
+
scale=scale,
|
630 |
+
chunk_size=chunk_size,
|
631 |
+
offsets=offsets,
|
632 |
+
indices=indices
|
633 |
+
)
|
634 |
+
ctx.save_for_backward(q, k, v, g, o, lse)
|
635 |
+
ctx.chunk_size = chunk_size
|
636 |
+
ctx.offsets = offsets
|
637 |
+
ctx.indices = indices
|
638 |
+
ctx.scale = scale
|
639 |
+
return o.to(q.dtype)
|
640 |
+
|
641 |
+
@staticmethod
|
642 |
+
@input_guard
|
643 |
+
@autocast_custom_bwd
|
644 |
+
def backward(ctx, do):
|
645 |
+
q, k, v, g, o, lse = ctx.saved_tensors
|
646 |
+
dq, dk, dv, dg = parallel_forgetting_attn_bwd(
|
647 |
+
q=q,
|
648 |
+
k=k,
|
649 |
+
v=v,
|
650 |
+
g=g,
|
651 |
+
o=o,
|
652 |
+
lse=lse,
|
653 |
+
do=do,
|
654 |
+
scale=ctx.scale,
|
655 |
+
chunk_size=ctx.chunk_size,
|
656 |
+
offsets=ctx.offsets,
|
657 |
+
indices=ctx.indices
|
658 |
+
)
|
659 |
+
dg = chunk_global_cumsum(dg, reverse=True, head_first=False, offsets=ctx.offsets)
|
660 |
+
return dq.to(q), dk.to(k), dv.to(v), dg.to(g), None, None, None, None, None, None, None, None
|
661 |
+
|
662 |
+
|
663 |
+
def parallel_forgetting_attn(
|
664 |
+
q: torch.Tensor,
|
665 |
+
k: torch.Tensor,
|
666 |
+
v: torch.Tensor,
|
667 |
+
g: torch.Tensor,
|
668 |
+
scale: Optional[float] = None,
|
669 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
670 |
+
head_first: bool = False
|
671 |
+
) -> torch.Tensor:
|
672 |
+
r"""
|
673 |
+
Args:
|
674 |
+
q (torch.Tensor):
|
675 |
+
queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
|
676 |
+
k (torch.Tensor):
|
677 |
+
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
|
678 |
+
GQA will be applied if HQ is divisible by H.
|
679 |
+
v (torch.Tensor):
|
680 |
+
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
|
681 |
+
g (torch.Tensor):
|
682 |
+
Forget gates (in **log space**) of shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
|
683 |
+
scale (Optional[int]):
|
684 |
+
Scale factor for attention scores.
|
685 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
686 |
+
cu_seqlens (torch.LongTensor):
|
687 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
688 |
+
consistent with the FlashAttention API.
|
689 |
+
head_first (Optional[bool]):
|
690 |
+
Whether the inputs are in the head-first format. Default: `False`.
|
691 |
+
|
692 |
+
Returns:
|
693 |
+
o (torch.Tensor):
|
694 |
+
Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
|
695 |
+
"""
|
696 |
+
if scale is None:
|
697 |
+
scale = k.shape[-1] ** -0.5
|
698 |
+
if cu_seqlens is not None:
|
699 |
+
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
|
700 |
+
if g is not None:
|
701 |
+
g = g.float()
|
702 |
+
if head_first:
|
703 |
+
q, k, v = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v))
|
704 |
+
g = rearrange(g, 'b h t -> b t h')
|
705 |
+
o = ParallelForgettingAttentionFunction.apply(q, k, v, g, scale, cu_seqlens)
|
706 |
+
if head_first:
|
707 |
+
o = rearrange(o, 'b t h d -> b h t d')
|
708 |
+
return o
|
fla/ops/generalized_delta_rule/dplr/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .chunk import chunk_dplr_delta_rule
|
2 |
+
from .fused_recurrent import fused_recurrent_dplr_delta_rule
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
'chunk_dplr_delta_rule',
|
6 |
+
'fused_recurrent_dplr_delta_rule'
|
7 |
+
]
|
fla/ops/generalized_delta_rule/dplr/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (367 Bytes). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (12.1 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_A_bwd.cpython-311.pyc
ADDED
Binary file (31.8 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_A_fwd.cpython-311.pyc
ADDED
Binary file (25.9 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_h_bwd.cpython-311.pyc
ADDED
Binary file (12.5 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_h_fwd.cpython-311.pyc
ADDED
Binary file (12.8 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_o_bwd.cpython-311.pyc
ADDED
Binary file (28.5 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/chunk_o_fwd.cpython-311.pyc
ADDED
Binary file (9.11 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/fused_recurrent.cpython-311.pyc
ADDED
Binary file (15.1 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/wy_fast_bwd.cpython-311.pyc
ADDED
Binary file (13.5 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/__pycache__/wy_fast_fwd.cpython-311.pyc
ADDED
Binary file (21.9 kB). View file
|
|
fla/ops/generalized_delta_rule/dplr/chunk_o_bwd.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils.op import exp
|
11 |
+
from fla.utils import check_shared_mem, use_cuda_graph
|
12 |
+
|
13 |
+
BK_LIST = [32, 64, 128] if check_shared_mem() else [16, 32]
|
14 |
+
|
15 |
+
|
16 |
+
@triton.heuristics({
|
17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
18 |
+
})
|
19 |
+
@triton.autotune(
|
20 |
+
configs=[
|
21 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
22 |
+
for num_warps in [2, 4, 8, 16, 32]
|
23 |
+
for num_stages in [2, 3, 4]
|
24 |
+
],
|
25 |
+
key=['BV', 'BT'],
|
26 |
+
use_cuda_graph=use_cuda_graph,
|
27 |
+
)
|
28 |
+
@triton.jit(do_not_specialize=['T'])
|
29 |
+
def chunk_dplr_bwd_kernel_dAu(
|
30 |
+
v,
|
31 |
+
do,
|
32 |
+
v_new,
|
33 |
+
A_qb,
|
34 |
+
dA_qk,
|
35 |
+
dA_qb,
|
36 |
+
dv_new,
|
37 |
+
offsets,
|
38 |
+
indices,
|
39 |
+
scale: tl.constexpr,
|
40 |
+
T,
|
41 |
+
H: tl.constexpr,
|
42 |
+
V: tl.constexpr,
|
43 |
+
BT: tl.constexpr,
|
44 |
+
BV: tl.constexpr,
|
45 |
+
USE_OFFSETS: tl.constexpr,
|
46 |
+
HEAD_FIRST: tl.constexpr
|
47 |
+
):
|
48 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
49 |
+
i_b, i_h = i_bh // H, i_bh % H
|
50 |
+
if USE_OFFSETS:
|
51 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
52 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
53 |
+
else:
|
54 |
+
bos, eos = i_b * T, i_b * T + T
|
55 |
+
T = eos - bos
|
56 |
+
|
57 |
+
b_dA_qk = tl.zeros([BT, BT], dtype=tl.float32)
|
58 |
+
b_dA_qb = tl.zeros([BT, BT], dtype=tl.float32)
|
59 |
+
|
60 |
+
if HEAD_FIRST:
|
61 |
+
p_A_qb = tl.make_block_ptr(A_qb + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
62 |
+
else:
|
63 |
+
p_A_qb = tl.make_block_ptr(A_qb + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
64 |
+
|
65 |
+
b_A_qb = tl.load(p_A_qb, boundary_check=(0, 1))
|
66 |
+
# causal mask
|
67 |
+
b_A_qb = tl.where(tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :], b_A_qb, 0.).to(b_A_qb.dtype)
|
68 |
+
|
69 |
+
for i_v in range(tl.cdiv(V, BV)):
|
70 |
+
if HEAD_FIRST:
|
71 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
72 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
|
73 |
+
p_v_new = tl.make_block_ptr(v_new + i_bh * T*V, (V, T), (1, V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
|
74 |
+
p_dv_new = tl.make_block_ptr(dv_new + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
75 |
+
else:
|
76 |
+
p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
77 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
|
78 |
+
p_v_new = tl.make_block_ptr(v_new + (bos*H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
|
79 |
+
p_dv_new = tl.make_block_ptr(dv_new + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
80 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
81 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
82 |
+
b_v_new = tl.load(p_v_new, boundary_check=(0, 1))
|
83 |
+
b_dA_qk += tl.dot(b_do, b_v)
|
84 |
+
b_dA_qb += tl.dot(b_do, b_v_new)
|
85 |
+
b_dv_new = tl.dot(tl.trans(b_A_qb), b_do)
|
86 |
+
# for recurrent
|
87 |
+
tl.store(p_dv_new, b_dv_new.to(p_dv_new.dtype.element_ty), boundary_check=(0, 1))
|
88 |
+
|
89 |
+
if HEAD_FIRST:
|
90 |
+
p_dA_qk = tl.make_block_ptr(dA_qk + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
91 |
+
p_dA_qb = tl.make_block_ptr(dA_qb + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
92 |
+
else:
|
93 |
+
p_dA_qk = tl.make_block_ptr(dA_qk + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
94 |
+
p_dA_qb = tl.make_block_ptr(dA_qb + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
95 |
+
m_s = tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :]
|
96 |
+
b_dA_qk = tl.where(m_s, b_dA_qk * scale, 0.)
|
97 |
+
tl.store(p_dA_qk, b_dA_qk.to(p_dA_qk.dtype.element_ty), boundary_check=(0, 1))
|
98 |
+
b_dA_qb = tl.where(m_s, b_dA_qb * scale, 0.)
|
99 |
+
tl.store(p_dA_qb, b_dA_qb.to(p_dA_qb.dtype.element_ty), boundary_check=(0, 1))
|
100 |
+
|
101 |
+
|
102 |
+
@triton.heuristics({
|
103 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
104 |
+
})
|
105 |
+
@triton.autotune(
|
106 |
+
configs=[
|
107 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
108 |
+
for num_warps in [2, 4, 8, 16, 32]
|
109 |
+
for num_stages in [2, 3, 4]
|
110 |
+
],
|
111 |
+
key=['BT', 'BK', 'BV'],
|
112 |
+
use_cuda_graph=use_cuda_graph,
|
113 |
+
)
|
114 |
+
@triton.jit
|
115 |
+
def chunk_dplr_bwd_o_kernel(
|
116 |
+
v,
|
117 |
+
v_new,
|
118 |
+
h,
|
119 |
+
do,
|
120 |
+
dh,
|
121 |
+
dk,
|
122 |
+
db,
|
123 |
+
w,
|
124 |
+
dq,
|
125 |
+
dv,
|
126 |
+
dw,
|
127 |
+
gk,
|
128 |
+
dgk_last,
|
129 |
+
k,
|
130 |
+
b,
|
131 |
+
offsets,
|
132 |
+
indices,
|
133 |
+
T,
|
134 |
+
H: tl.constexpr,
|
135 |
+
K: tl.constexpr,
|
136 |
+
V: tl.constexpr,
|
137 |
+
BT: tl.constexpr,
|
138 |
+
BK: tl.constexpr,
|
139 |
+
BV: tl.constexpr,
|
140 |
+
USE_OFFSETS: tl.constexpr,
|
141 |
+
HEAD_FIRST: tl.constexpr,
|
142 |
+
):
|
143 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
144 |
+
i_b, i_h = i_bh // H, i_bh % H
|
145 |
+
|
146 |
+
if USE_OFFSETS:
|
147 |
+
i_tg = i_t
|
148 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
149 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
150 |
+
T = eos - bos
|
151 |
+
NT = tl.cdiv(T, BT)
|
152 |
+
else:
|
153 |
+
NT = tl.cdiv(T, BT)
|
154 |
+
i_tg = i_b * NT + i_t
|
155 |
+
bos, eos = i_b * T, i_b * T + T
|
156 |
+
|
157 |
+
# offset calculation
|
158 |
+
v += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
|
159 |
+
v_new += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
|
160 |
+
do += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
|
161 |
+
h += (i_bh * NT + i_t) * K*V if HEAD_FIRST else (i_tg * H + i_h) * K * V
|
162 |
+
dh += (i_bh * NT + i_t) * K*V if HEAD_FIRST else (i_tg * H + i_h) * K * V
|
163 |
+
dk += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
164 |
+
k += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
165 |
+
db += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
166 |
+
b += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
167 |
+
dw += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
168 |
+
dv += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
|
169 |
+
dq += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
170 |
+
w += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
171 |
+
# CHECK HEAD_FIRST is FALSE
|
172 |
+
dgk_last += (i_bh * NT + i_t) * K if HEAD_FIRST else (i_tg * H + i_h) * K
|
173 |
+
gk += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
174 |
+
|
175 |
+
stride_qk = K if HEAD_FIRST else H*K
|
176 |
+
stride_vo = V if HEAD_FIRST else H*V
|
177 |
+
|
178 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
179 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
180 |
+
b_dw = tl.zeros([BT, BK], dtype=tl.float32)
|
181 |
+
b_db = tl.zeros([BT, BK], dtype=tl.float32)
|
182 |
+
b_dgk_last = tl.zeros([BK], dtype=tl.float32)
|
183 |
+
|
184 |
+
for i_v in range(tl.cdiv(V, BV)):
|
185 |
+
p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
186 |
+
p_v_new = tl.make_block_ptr(v_new, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
187 |
+
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
188 |
+
p_h = tl.make_block_ptr(h, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
189 |
+
p_dh = tl.make_block_ptr(dh, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
190 |
+
# [BT, BV]
|
191 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
192 |
+
b_v_new = tl.load(p_v_new, boundary_check=(0, 1))
|
193 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
194 |
+
# [BV, BK]
|
195 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
196 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
197 |
+
b_dgk_last += tl.sum((b_h * b_dh).to(tl.float32), axis=0)
|
198 |
+
|
199 |
+
# [BT, BV] @ [BV, BK] -> [BT, BK]
|
200 |
+
b_dq += tl.dot(b_do, b_h.to(b_do.dtype))
|
201 |
+
# [BT, BV] @ [BV, BK] -> [BT, BK]
|
202 |
+
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype))
|
203 |
+
b_db += tl.dot(b_v_new, b_dh.to(b_v_new.dtype))
|
204 |
+
p_dv = tl.make_block_ptr(dv, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
205 |
+
b_dv = tl.load(p_dv, boundary_check=(0, 1))
|
206 |
+
b_dw += tl.dot(b_dv.to(b_v.dtype), b_h.to(b_v.dtype))
|
207 |
+
|
208 |
+
m_k = (i_k*BK+tl.arange(0, BK)) < K
|
209 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
210 |
+
b_gk_last = tl.load(gk + last_idx * stride_qk + i_k*BK + tl.arange(0, BK), mask=m_k, other=float('-inf'))
|
211 |
+
b_dgk_last *= exp(b_gk_last)
|
212 |
+
p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
213 |
+
p_b = tl.make_block_ptr(b, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
214 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
215 |
+
b_b = tl.load(p_b, boundary_check=(0, 1))
|
216 |
+
b_dgk_last += tl.sum(b_k * b_dk, axis=0)
|
217 |
+
b_dgk_last += tl.sum(b_b * b_db, axis=0)
|
218 |
+
tl.store(dgk_last + tl.arange(0, BK) + i_k * BK, b_dgk_last, mask=m_k)
|
219 |
+
|
220 |
+
p_dw = tl.make_block_ptr(dw, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
221 |
+
p_dk = tl.make_block_ptr(dk, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
222 |
+
p_db = tl.make_block_ptr(db, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
223 |
+
p_dq = tl.make_block_ptr(dq, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
224 |
+
tl.store(p_dw, b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
|
225 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
226 |
+
tl.store(p_db, b_db.to(p_db.dtype.element_ty), boundary_check=(0, 1))
|
227 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
228 |
+
|
229 |
+
|
230 |
+
@triton.heuristics({
|
231 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None,
|
232 |
+
})
|
233 |
+
@triton.autotune(
|
234 |
+
configs=[
|
235 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
236 |
+
for num_warps in [2, 4, 8, 16, 32]
|
237 |
+
for num_stages in [2, 3, 4]
|
238 |
+
for BK in BK_LIST
|
239 |
+
for BV in BK_LIST
|
240 |
+
],
|
241 |
+
key=['BT', 'BK', 'BV'],
|
242 |
+
use_cuda_graph=use_cuda_graph,
|
243 |
+
)
|
244 |
+
@triton.jit
|
245 |
+
def chunk_dplr_bwd_kernel_dv(
|
246 |
+
A_qk,
|
247 |
+
kg,
|
248 |
+
do,
|
249 |
+
dv,
|
250 |
+
dh,
|
251 |
+
offsets,
|
252 |
+
indices,
|
253 |
+
T,
|
254 |
+
H: tl.constexpr,
|
255 |
+
K: tl.constexpr,
|
256 |
+
V: tl.constexpr,
|
257 |
+
BT: tl.constexpr,
|
258 |
+
BK: tl.constexpr,
|
259 |
+
BV: tl.constexpr,
|
260 |
+
USE_OFFSETS: tl.constexpr,
|
261 |
+
HEAD_FIRST: tl.constexpr,
|
262 |
+
):
|
263 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
264 |
+
i_b, i_h = i_bh // H, i_bh % H
|
265 |
+
if USE_OFFSETS:
|
266 |
+
i_tg = i_t
|
267 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
268 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
269 |
+
T = eos - bos
|
270 |
+
NT = tl.cdiv(T, BT)
|
271 |
+
else:
|
272 |
+
NT = tl.cdiv(T, BT)
|
273 |
+
i_tg = i_b * NT + i_t
|
274 |
+
bos, eos = i_b * T, i_b * T + T
|
275 |
+
|
276 |
+
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
|
277 |
+
|
278 |
+
# offset calculation
|
279 |
+
A_qk += i_bh * T * BT if HEAD_FIRST else (bos * H + i_h) * BT
|
280 |
+
do += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
|
281 |
+
dv += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
|
282 |
+
kg += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
|
283 |
+
dh += (i_bh * NT + i_t) * K*V if HEAD_FIRST else (i_tg * H + i_h) * K*V
|
284 |
+
|
285 |
+
stride_qk = K if HEAD_FIRST else H*K
|
286 |
+
stride_vo = V if HEAD_FIRST else H*V
|
287 |
+
stride_A = BT if HEAD_FIRST else H*BT
|
288 |
+
|
289 |
+
for i_k in range(tl.cdiv(K, BK)):
|
290 |
+
p_dh = tl.make_block_ptr(dh, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
291 |
+
p_kg = tl.make_block_ptr(kg, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
292 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
293 |
+
b_kg = tl.load(p_kg, boundary_check=(0, 1))
|
294 |
+
b_dv += tl.dot(b_kg, b_dh.to(b_kg.dtype))
|
295 |
+
|
296 |
+
p_Aqk = tl.make_block_ptr(A_qk, (BT, T), (1, stride_A), (0, i_t * BT), (BT, BT), (0, 1))
|
297 |
+
b_A = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :], tl.load(p_Aqk, boundary_check=(0, 1)), 0)
|
298 |
+
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
299 |
+
p_dv = tl.make_block_ptr(dv, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
300 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
301 |
+
b_dv += tl.dot(b_A.to(b_do.dtype), b_do)
|
302 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
303 |
+
|
304 |
+
|
305 |
+
def chunk_dplr_bwd_dv(
|
306 |
+
A_qk: torch.Tensor,
|
307 |
+
kg: torch.Tensor,
|
308 |
+
do: torch.Tensor,
|
309 |
+
dh: torch.Tensor,
|
310 |
+
offsets: Optional[torch.LongTensor] = None,
|
311 |
+
indices: Optional[torch.LongTensor] = None,
|
312 |
+
head_first: bool = True,
|
313 |
+
chunk_size: int = 64
|
314 |
+
) -> torch.Tensor:
|
315 |
+
if head_first:
|
316 |
+
B, H, T, K, V = *kg.shape, do.shape[-1]
|
317 |
+
else:
|
318 |
+
B, T, H, K, V = *kg.shape, do.shape[-1]
|
319 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
320 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
321 |
+
|
322 |
+
dv = torch.empty_like(do)
|
323 |
+
|
324 |
+
def grid(meta): return (
|
325 |
+
triton.cdiv(V, meta['BV']),
|
326 |
+
NT,
|
327 |
+
B * H
|
328 |
+
)
|
329 |
+
chunk_dplr_bwd_kernel_dv[grid](
|
330 |
+
A_qk=A_qk,
|
331 |
+
kg=kg,
|
332 |
+
do=do,
|
333 |
+
dv=dv,
|
334 |
+
dh=dh,
|
335 |
+
offsets=offsets,
|
336 |
+
indices=indices,
|
337 |
+
T=T,
|
338 |
+
H=H,
|
339 |
+
K=K,
|
340 |
+
V=V,
|
341 |
+
BT=BT,
|
342 |
+
HEAD_FIRST=head_first
|
343 |
+
)
|
344 |
+
return dv
|
345 |
+
|
346 |
+
|
347 |
+
def chunk_dplr_bwd_o(
|
348 |
+
k: torch.Tensor,
|
349 |
+
b: torch.Tensor,
|
350 |
+
v: torch.Tensor,
|
351 |
+
v_new: torch.Tensor,
|
352 |
+
gk: torch.Tensor,
|
353 |
+
do: torch.Tensor,
|
354 |
+
h: torch.Tensor,
|
355 |
+
dh: torch.Tensor,
|
356 |
+
dv: torch.Tensor,
|
357 |
+
w: torch.Tensor,
|
358 |
+
offsets: Optional[torch.LongTensor] = None,
|
359 |
+
indices: Optional[torch.LongTensor] = None,
|
360 |
+
chunk_size: int = 64,
|
361 |
+
scale: float = 1.0,
|
362 |
+
head_first: bool = True,
|
363 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
364 |
+
|
365 |
+
if head_first:
|
366 |
+
B, H, T, K, V = *w.shape, v.shape[-1]
|
367 |
+
else:
|
368 |
+
B, T, H, K, V = *w.shape, v.shape[-1]
|
369 |
+
|
370 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
371 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
372 |
+
|
373 |
+
BK = min(triton.next_power_of_2(K), 64) if check_shared_mem() else min(triton.next_power_of_2(K), 32)
|
374 |
+
BV = min(triton.next_power_of_2(V), 64) if check_shared_mem() else min(triton.next_power_of_2(K), 32)
|
375 |
+
NK = triton.cdiv(K, BK)
|
376 |
+
dq = torch.empty_like(k)
|
377 |
+
dk = torch.empty_like(k)
|
378 |
+
dw = torch.empty_like(w)
|
379 |
+
db = torch.empty_like(b)
|
380 |
+
grid = (NK, NT, B * H)
|
381 |
+
|
382 |
+
dgk_last = torch.empty(B, H, NT, K, dtype=torch.float, device=w.device) if head_first \
|
383 |
+
else torch.empty(B, NT, H, K, dtype=torch.float, device=w.device)
|
384 |
+
|
385 |
+
chunk_dplr_bwd_o_kernel[grid](
|
386 |
+
k=k,
|
387 |
+
b=b,
|
388 |
+
v=v,
|
389 |
+
v_new=v_new,
|
390 |
+
h=h,
|
391 |
+
do=do,
|
392 |
+
dh=dh,
|
393 |
+
dq=dq,
|
394 |
+
dk=dk,
|
395 |
+
db=db,
|
396 |
+
dgk_last=dgk_last,
|
397 |
+
w=w,
|
398 |
+
dv=dv,
|
399 |
+
dw=dw,
|
400 |
+
gk=gk,
|
401 |
+
offsets=offsets,
|
402 |
+
indices=indices,
|
403 |
+
T=T,
|
404 |
+
H=H,
|
405 |
+
K=K,
|
406 |
+
V=V,
|
407 |
+
BT=BT,
|
408 |
+
BK=BK,
|
409 |
+
BV=BV,
|
410 |
+
HEAD_FIRST=head_first,
|
411 |
+
)
|
412 |
+
return dq, dk, dw, db, dgk_last
|
413 |
+
|
414 |
+
|
415 |
+
def chunk_dplr_bwd_dAu(
|
416 |
+
v: torch.Tensor,
|
417 |
+
v_new: torch.Tensor,
|
418 |
+
do: torch.Tensor,
|
419 |
+
A_qb: torch.Tensor,
|
420 |
+
scale: float,
|
421 |
+
offsets: Optional[torch.LongTensor] = None,
|
422 |
+
indices: Optional[torch.LongTensor] = None,
|
423 |
+
head_first: bool = True,
|
424 |
+
chunk_size: int = 64
|
425 |
+
) -> torch.Tensor:
|
426 |
+
if head_first:
|
427 |
+
B, H, T, V = v.shape
|
428 |
+
else:
|
429 |
+
B, T, H, V = v.shape
|
430 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
431 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
432 |
+
|
433 |
+
if check_shared_mem('ampere'): # A100
|
434 |
+
BV = min(triton.next_power_of_2(V), 128)
|
435 |
+
elif check_shared_mem('ada'): # 4090
|
436 |
+
BV = min(triton.next_power_of_2(V), 64)
|
437 |
+
else:
|
438 |
+
BV = min(triton.next_power_of_2(V), 32)
|
439 |
+
|
440 |
+
grid = (NT, B * H)
|
441 |
+
dA_qk = torch.empty(B, H, T, BT, dtype=torch.float, device=v.device) if head_first \
|
442 |
+
else torch.empty(B, T, H, BT, dtype=torch.float, device=v.device)
|
443 |
+
dA_qb = torch.empty(B, H, T, BT, dtype=torch.float, device=v.device) if head_first \
|
444 |
+
else torch.empty(B, T, H, BT, dtype=torch.float, device=v.device)
|
445 |
+
dv_new = torch.empty_like(v_new)
|
446 |
+
chunk_dplr_bwd_kernel_dAu[grid](
|
447 |
+
v=v,
|
448 |
+
do=do,
|
449 |
+
v_new=v_new,
|
450 |
+
A_qb=A_qb,
|
451 |
+
dA_qk=dA_qk,
|
452 |
+
dA_qb=dA_qb,
|
453 |
+
dv_new=dv_new,
|
454 |
+
offsets=offsets,
|
455 |
+
indices=indices,
|
456 |
+
scale=scale,
|
457 |
+
T=T,
|
458 |
+
H=H,
|
459 |
+
V=V,
|
460 |
+
BT=BT,
|
461 |
+
BV=BV,
|
462 |
+
HEAD_FIRST=head_first
|
463 |
+
)
|
464 |
+
return dv_new, dA_qk, dA_qb
|
fla/ops/linear_attn/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_linear_attn
|
4 |
+
from .fused_chunk import fused_chunk_linear_attn
|
5 |
+
from .fused_recurrent import fused_recurrent_linear_attn
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'chunk_linear_attn',
|
9 |
+
'fused_chunk_linear_attn',
|
10 |
+
'fused_recurrent_linear_attn'
|
11 |
+
]
|
fla/ops/linear_attn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (429 Bytes). View file
|
|
fla/ops/linear_attn/__pycache__/chunk.cpython-311.pyc
ADDED
Binary file (2.62 kB). View file
|
|
fla/ops/linear_attn/__pycache__/fused_chunk.cpython-311.pyc
ADDED
Binary file (18.8 kB). View file
|
|
fla/ops/linear_attn/__pycache__/fused_recurrent.cpython-311.pyc
ADDED
Binary file (14.4 kB). View file
|
|