|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.utils.op import exp |
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_INITIAL_STATE': lambda args: args['h0'] is not None, |
|
'STORE_FINAL_STATE': lambda args: args['ht'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps) |
|
for num_warps in [1, 2, 4, 8, 16] |
|
], |
|
key=['BK', 'BV'] |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fused_recurrent_rwkv6_fwd_kernel( |
|
q, |
|
k, |
|
v, |
|
w, |
|
u, |
|
o, |
|
h0, |
|
ht, |
|
offsets, |
|
scale, |
|
T, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
REVERSE: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
STORE_FINAL_STATE: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) |
|
all = T |
|
T = eos - bos |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
all = B * T |
|
|
|
o_k = i_k * BK + tl.arange(0, BK) |
|
o_v = i_v * BV + tl.arange(0, BV) |
|
if HEAD_FIRST: |
|
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v |
|
p_w = w + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_o = o + (i_k * B*H + i_nh) * T*V + ((T-1) * V if REVERSE else 0) + o_v |
|
else: |
|
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_w = w + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_o = o + ((i_k * all + bos) + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_u = u + i_h * K + o_k |
|
|
|
mask_k = o_k < K |
|
mask_v = o_v < V |
|
mask_h = mask_k[:, None] & mask_v[None, :] |
|
|
|
b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) |
|
|
|
b_h = tl.zeros([BK, BV], dtype=tl.float32) |
|
if USE_INITIAL_STATE: |
|
p_h0 = h0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :] |
|
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) |
|
|
|
for _ in range(0, T): |
|
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale |
|
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) |
|
b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) |
|
b_kv = b_k[:, None] * b_v[None, :] |
|
b_o = tl.sum((b_h + b_kv * b_u[:, None]) * b_q[:, None], 0) |
|
b_h = b_h * exp(b_w)[:, None] + b_kv |
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v) |
|
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
p_w += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
|
|
if STORE_FINAL_STATE: |
|
p_ht = ht + i_nh * K*V + o_k[:, None] * V + o_v[None, :] |
|
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_INITIAL_STATE': lambda args: args['h0'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=1), |
|
triton.Config({}, num_warps=2), |
|
triton.Config({}, num_warps=4), |
|
], |
|
key=['BK', 'BV'] |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fused_recurrent_rwkv6_bwd_kernel_dq( |
|
k, |
|
v, |
|
w, |
|
u, |
|
do, |
|
dq, |
|
dq1, |
|
h0, |
|
offsets, |
|
scale, |
|
T, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
REVERSE: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) |
|
all = T |
|
T = eos - bos |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
all = B * T |
|
|
|
o_k = i_k * BK + tl.arange(0, BK) |
|
o_v = i_v * BV + tl.arange(0, BV) |
|
if HEAD_FIRST: |
|
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v |
|
p_w = w + i_nh * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_do = do + i_nh * T*V + ((T-1) * V if REVERSE else 0) + o_v |
|
p_dq = dq + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
p_dq1 = dq1 + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + o_k |
|
else: |
|
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_w = w + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_do = do + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_dq = dq + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_dq1 = dq1 + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_u = u + i_h * K + o_k |
|
|
|
mask_k = o_k < K |
|
mask_v = o_v < V |
|
mask_h = mask_k[:, None] & mask_v[None, :] |
|
|
|
b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) |
|
|
|
b_h = tl.zeros([BK, BV], dtype=tl.float32) |
|
if USE_INITIAL_STATE: |
|
p_h0 = h0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :] |
|
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) |
|
|
|
for _ in range(0, T): |
|
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) |
|
b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) |
|
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) |
|
b_kv = b_k[:, None] * b_v[None, :] |
|
|
|
b_hq = b_h * b_do[None, :] |
|
b_dq = tl.sum(b_hq + b_kv * b_u[:, None] * b_do[None, :], 1) * scale |
|
b_dq1 = tl.sum(b_hq, 1) |
|
b_h = b_h * exp(b_w)[:, None] |
|
b_h += b_kv |
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k) |
|
tl.store(p_dq1, b_dq1.to(p_dq1.dtype.element_ty), mask=mask_k) |
|
|
|
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
p_w += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_dq1 += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_INITIAL_STATE': lambda args: args['dh0'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=1), |
|
triton.Config({}, num_warps=2), |
|
triton.Config({}, num_warps=4), |
|
], |
|
key=['BK', 'BV'] |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fused_recurrent_rwkv6_bwd_kernel_dkv( |
|
q, |
|
k, |
|
v, |
|
w, |
|
u, |
|
do, |
|
dk, |
|
dk1, |
|
dv, |
|
dh0, |
|
offsets, |
|
scale, |
|
T, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
REVERSE: tl.constexpr, |
|
USE_INITIAL_STATE: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr, |
|
): |
|
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) |
|
all = T |
|
T = eos - bos |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
all = B * T |
|
|
|
o_k = i_k * BK + tl.arange(0, BK) |
|
o_v = i_v * BV + tl.arange(0, BV) |
|
if HEAD_FIRST: |
|
p_q = q + i_nh * T*K + ((T-1) * K if not REVERSE else 0) + o_k |
|
p_k = k + i_nh * T*K + ((T-1) * K if not REVERSE else 0) + o_k |
|
p_v = v + i_nh * T*V + ((T-1) * V if not REVERSE else 0) + o_v |
|
p_w = w + i_nh * T*K + ((T-1) * K if not REVERSE else 0) + o_k |
|
p_do = do + i_nh * T*V + ((T-1) * V if not REVERSE else 0) + o_v |
|
p_dk = dk + (i_v * B*H + i_nh) * T*K + ((T-1) * K if not REVERSE else 0) + o_k |
|
p_dk1 = dk1 + (i_v * B*H + i_nh) * T*K + ((T-1) * K if not REVERSE else 0) + o_k |
|
p_dv = dv + (i_k * B*H + i_nh) * T*V + ((T-1) * V if not REVERSE else 0) + o_v |
|
else: |
|
p_q = q + (bos + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_k = k + (bos + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_v = v + (bos + ((T-1) if not REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_w = w + (bos + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_do = do + (bos + ((T-1) if not REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_dk = dk + ((i_v * all + bos) + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_dk1 = dk1 + ((i_v * all + bos) + ((T-1) if not REVERSE else 0)) * H*K + i_h * K + o_k |
|
p_dv = dv + ((i_k * all + bos) + ((T-1) if not REVERSE else 0)) * H*V + i_h * V + o_v |
|
p_u = u + i_h * K + o_k |
|
|
|
mask_k = o_k < K |
|
mask_v = o_v < V |
|
mask_h = mask_k[:, None] & mask_v[None, :] |
|
|
|
b_u = tl.load(p_u, mask=mask_k, other=0).to(tl.float32) |
|
|
|
b_dh = tl.zeros([BK, BV], dtype=tl.float32) |
|
for _ in range(T - 1, -1, -1): |
|
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale |
|
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) |
|
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) |
|
b_w = tl.load(p_w, mask=mask_k, other=0).to(tl.float32) |
|
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) |
|
b_dkv = b_q[:, None] * b_do[None, :] |
|
b_dk = tl.sum(b_dh * b_v[None, :], 1) |
|
tl.store(p_dk1, b_dk.to(p_dk1.dtype.element_ty), mask=mask_k) |
|
b_dk += tl.sum(b_dkv * b_u[:, None] * b_v[None, :], 1) |
|
b_dv = tl.sum((b_dh + (b_dkv * b_u[:, None])) * b_k[:, None], 0) |
|
|
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k) |
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v) |
|
b_dh *= exp(b_w)[:, None] |
|
b_dh += b_dkv |
|
|
|
p_q += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_k += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_v += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
p_w += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_do += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
p_dk += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_dk1 += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * K |
|
p_dv += (-1 if not REVERSE else 1) * (1 if HEAD_FIRST else H) * V |
|
|
|
if USE_INITIAL_STATE: |
|
p_dh0 = dh0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :] |
|
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({'BT': BT, 'BK': BK}, num_warps=num_warps) |
|
for BT in [16, 32, 64] |
|
for BK in [32, 64] |
|
for num_warps in [1, 2, 4, 8] |
|
], |
|
key=['K'] |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def fused_recurrent_rwkv6_bwd_kernel_dw( |
|
q, |
|
k, |
|
dq, |
|
dk, |
|
dw, |
|
offsets, |
|
scale, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
REVERSE: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr |
|
): |
|
i_k, i_nh = tl.program_id(0), tl.program_id(1) |
|
i_n, i_h = i_nh // H, i_nh % H |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
|
|
o_i = tl.arange(0, BT) |
|
m_i = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.) if not REVERSE else tl.where(o_i[:, None] <= o_i[None, :], 1., 0.) |
|
|
|
b_z = tl.zeros([BK], dtype=tl.float32) |
|
|
|
i_t = 0 if not REVERSE else NT - 1 |
|
for _ in range(NT): |
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_nh * T*K, (T, K), (K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) |
|
p_dq = tl.make_block_ptr(dq + i_nh * T*K, (T, K), (K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_nh * T*K, (T-1, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + i_nh * T*K, (T-1, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dw = tl.make_block_ptr(dw + i_nh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) |
|
p_dq = tl.make_block_ptr(dq + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + 1, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T-1, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + (bos*H + i_h) * K, (T-1, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dw = tl.make_block_ptr(dw + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)).to(tl.float32) |
|
b_dq = tl.load(p_dq, boundary_check=(0, 1)).to(tl.float32) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)).to(tl.float32) |
|
b_dk = tl.load(p_dk, boundary_check=(0, 1)).to(tl.float32) |
|
b_dw = (b_q * b_dq * scale) - b_k * b_dk |
|
b_c = b_z[None, :] + tl.dot(m_i, b_dw, allow_tf32=False) |
|
tl.store(p_dw, b_c.to(p_dw.dtype.element_ty), boundary_check=(0, 1)) |
|
if i_t >= 0: |
|
b_z += tl.sum(b_dw, 0) |
|
|
|
i_t += (1 if not REVERSE else -1) |
|
|
|
|
|
def fused_recurrent_rwkv6_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
w: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: Optional[float] = None, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
reverse: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
): |
|
if head_first: |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *k.shape, v.shape[-1] |
|
N = B if offsets is None else len(offsets) - 1 |
|
BK, BV = min(triton.next_power_of_2(K), 32), min(triton.next_power_of_2(V), 32) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
|
|
h0 = initial_state |
|
ht = q.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None |
|
o = q.new_empty(NK, *v.shape, dtype=torch.float) |
|
|
|
grid = (NV, NK, N * H) |
|
fused_recurrent_rwkv6_fwd_kernel[grid]( |
|
q, |
|
k, |
|
v, |
|
w, |
|
u, |
|
o, |
|
h0, |
|
ht, |
|
offsets, |
|
scale, |
|
T=T, |
|
B=B, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BK=BK, |
|
BV=BV, |
|
REVERSE=reverse, |
|
HEAD_FIRST=head_first |
|
) |
|
o = o.sum(0) |
|
return o, ht |
|
|
|
|
|
def fused_recurrent_rwkv6_bwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
w: torch.Tensor, |
|
u: torch.Tensor, |
|
do: torch.Tensor, |
|
scale: Optional[float] = None, |
|
initial_state: Optional[torch.Tensor] = None, |
|
reverse: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
): |
|
if head_first: |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *k.shape, v.shape[-1] |
|
N = B if offsets is None else len(offsets) - 1 |
|
|
|
BK, BV = min(triton.next_power_of_2(K), 16), min(triton.next_power_of_2(V), 64) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
|
|
dq = q.new_empty(NV, *q.shape, dtype=torch.float) |
|
dq1 = torch.empty_like(dq) |
|
|
|
grid = (NV, NK, N * H) |
|
fused_recurrent_rwkv6_bwd_kernel_dq[grid]( |
|
k, |
|
v, |
|
w, |
|
u, |
|
do, |
|
dq, |
|
dq1, |
|
initial_state, |
|
offsets, |
|
scale, |
|
T=T, |
|
B=B, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BK=BK, |
|
BV=BV, |
|
REVERSE=reverse, |
|
HEAD_FIRST=head_first |
|
) |
|
dq = dq.sum(0) |
|
dq1 = dq1.sum(0) |
|
|
|
BK, BV = min(triton.next_power_of_2(K), 32), min(triton.next_power_of_2(V), 32) |
|
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) |
|
|
|
dk = q.new_empty(NV, *k.shape, dtype=torch.float) |
|
dk1 = q.new_empty(NV, *k.shape, dtype=torch.float) |
|
dv = q.new_empty(NK, *v.shape, dtype=torch.float) |
|
|
|
dh0 = torch.empty_like(initial_state) if initial_state is not None else None |
|
grid = (NV, NK, N * H) |
|
fused_recurrent_rwkv6_bwd_kernel_dkv[grid]( |
|
q, |
|
k, |
|
v, |
|
w, |
|
u, |
|
do, |
|
dk, |
|
dk1, |
|
dv, |
|
dh0, |
|
offsets, |
|
scale, |
|
T=T, |
|
B=B, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BK=BK, |
|
BV=BV, |
|
REVERSE=reverse, |
|
HEAD_FIRST=head_first |
|
) |
|
dk = dk.sum(0) |
|
dk1 = dk1.sum(0) |
|
dv = dv.sum(0) |
|
|
|
dw = torch.empty_like(w) |
|
def grid(meta): return (triton.cdiv(meta['K'], meta['BK']), N * H) |
|
fused_recurrent_rwkv6_bwd_kernel_dw[grid]( |
|
q, |
|
k, |
|
dq1, |
|
dk1, |
|
dw, |
|
offsets, |
|
scale, |
|
T=T, |
|
H=H, |
|
K=K, |
|
REVERSE=not reverse, |
|
HEAD_FIRST=head_first |
|
) |
|
du = (do.float() * v).sum(-1, True, dtype=torch.float) * q * k * scale |
|
du = du.sum((0, 2)) if head_first else du.sum((0, 1)) |
|
return dq, dk, dv, dw, du, dh0 |
|
|
|
|
|
class FusedRecurrentRWKV6Function(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@input_guard |
|
@autocast_custom_fwd |
|
def forward( |
|
ctx, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
w: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: Optional[float] = None, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
reverse: bool = False, |
|
offsets: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
): |
|
o, ht = fused_recurrent_rwkv6_fwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
w=w, |
|
u=u, |
|
scale=scale, |
|
initial_state=initial_state, |
|
output_final_state=output_final_state, |
|
reverse=reverse, |
|
offsets=offsets, |
|
head_first=head_first |
|
) |
|
ctx.save_for_backward(q, k, v, w, u, initial_state) |
|
ctx.scale = scale |
|
ctx.reverse = reverse |
|
ctx.offsets = offsets |
|
ctx.head_first = head_first |
|
return o.to(v), ht |
|
|
|
@staticmethod |
|
@input_guard |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dht): |
|
q, k, v, w, u, initial_state = ctx.saved_tensors |
|
|
|
dq, dk, dv, dw, du, dh0 = fused_recurrent_rwkv6_bwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
w=w, |
|
u=u, |
|
do=do, |
|
scale=ctx.scale, |
|
initial_state=initial_state, |
|
reverse=ctx.reverse, |
|
offsets=ctx.offsets, |
|
head_first=ctx.head_first |
|
) |
|
dh0 = dh0.to(initial_state) if dh0 is not None else dh0 |
|
return dq.to(q), dk.to(k), dv.to(v), dw.to(w), du.to(u), None, dh0, None, None, None, None |
|
|
|
|
|
def fused_recurrent_rwkv6( |
|
r: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
w: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: Optional[int] = None, |
|
initial_state: Optional[torch.Tensor] = None, |
|
output_final_state: bool = False, |
|
reverse: bool = False, |
|
cu_seqlens: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Args: |
|
r (torch.Tensor): |
|
reception of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. |
|
Alias: q, query in linear attention. |
|
k (torch.Tensor): |
|
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. |
|
v (torch.Tensor): |
|
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. |
|
w (torch.Tensor): |
|
data-dependent decays of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` in log space! Alias: g. |
|
u (torch.Tensor): |
|
bonus of shape `[H, K]` |
|
scale (Optional[int]): |
|
Scale factor for the attention scores. |
|
If not provided, it will default to `1 / sqrt(K)`. Default: `None`. |
|
initial_state (Optional[torch.Tensor]): |
|
Initial state of shape `[N, H, K, V]` for `N` input sequences. |
|
For equal-length input sequences, `N` equals the batch size `B`. |
|
Default: `None`. |
|
output_final_state (Optional[bool]): |
|
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`. |
|
reverse (Optional[bool]): |
|
If `True`, process the state passing in reverse order. Default: `False`. |
|
cu_seqlens (torch.LongTensor): |
|
Cumulative sequence lengths of shape `[N+1]` used for variable-length training, |
|
consistent with the FlashAttention API. |
|
head_first (Optional[bool]): |
|
Whether the inputs are in the head-first format, which is not supported for variable-length inputs. |
|
Default: `True`. |
|
|
|
Returns: |
|
o (torch.Tensor): |
|
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. |
|
final_state (Optional[torch.Tensor]): |
|
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`. |
|
|
|
Examples:: |
|
>>> import torch |
|
>>> import torch.nn.functional as F |
|
>>> from einops import rearrange |
|
>>> from fla.ops.rwkv6 import fused_recurrent_rwkv6 |
|
# inputs with equal lengths |
|
>>> B, T, H, K, V = 4, 2048, 4, 512, 512 |
|
>>> q = torch.randn(B, T, H, K, device='cuda') |
|
>>> k = torch.randn(B, T, H, K, device='cuda') |
|
>>> v = torch.randn(B, T, H, V, device='cuda') |
|
>>> g = F.logsigmoid(torch.randn(B, T, H, K, device='cuda')) |
|
>>> u = torch.randn(H, K, device='cuda') |
|
>>> h0 = torch.randn(B, H, K, V, device='cuda') |
|
>>> o, ht = fused_recurrent_rwkv6(q, k, v, g, u, |
|
initial_state=h0, |
|
output_final_state=True, |
|
head_first=False) |
|
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required |
|
>>> q, k, v, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, g)) |
|
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected |
|
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long) |
|
>>> o_var, ht_var = fused_recurrent_rwkv6(q, k, v, g, u, |
|
initial_state=h0, |
|
output_final_state=True, |
|
cu_seqlens=cu_seqlens, |
|
head_first=False) |
|
>>> assert o.allclose(o_var.view(o.shape)) |
|
>>> assert ht.allclose(ht_var) |
|
""" |
|
if cu_seqlens is not None: |
|
if r.shape[0] != 1: |
|
raise ValueError(f"The batch size is expected to be 1 rather than {r.shape[0]} when using `cu_seqlens`." |
|
f"Please flatten variable-length inputs before processing.") |
|
if head_first: |
|
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") |
|
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1: |
|
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, " |
|
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.") |
|
if scale is None: |
|
scale = k.shape[-1] ** -0.5 |
|
o, final_state = FusedRecurrentRWKV6Function.apply( |
|
r, |
|
k, |
|
v, |
|
w, |
|
u, |
|
scale, |
|
initial_state, |
|
output_final_state, |
|
reverse, |
|
cu_seqlens, |
|
head_first |
|
) |
|
return o, final_state |
|
|