zaydzuhri's picture
Add files using upload-large-folder tool
4135502 verified
raw
history blame
52.4 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.common.chunk_h import chunk_fwd_h
from fla.ops.gla.chunk import chunk_gla_bwd_dA, chunk_gla_bwd_dv, chunk_gla_fwd_o_gk
from fla.ops.utils.op import exp
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard, use_cuda_graph
BK_LIST = [32, 64] if check_shared_mem() else [16, 32]
BV_LIST = [32, 64] if check_shared_mem() else [16, 32]
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BS': BS}, num_warps=num_warps, num_stages=num_stages)
for BS in [16, 32, 64]
for num_warps in [4, 8, 16]
for num_stages in [2, 3, 4]
],
key=['S', 'BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_fwd_cumsum_kernel(
s,
oi,
oe,
offsets,
indices,
T,
H: tl.constexpr,
S: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
USE_OFFSETS: tl.constexpr,
):
i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
o_i = tl.arange(0, BT)
m_i = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.).to(tl.float32)
m_e = tl.where(o_i[:, None] > o_i[None, :], 1., 0.).to(tl.float32)
if HEAD_FIRST:
p_s = tl.make_block_ptr(s + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_oi = tl.make_block_ptr(oi + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_oe = tl.make_block_ptr(oe + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
else:
p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H*S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_oi = tl.make_block_ptr(oi + (bos * H + i_h) * S, (T, S), (H*S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
p_oe = tl.make_block_ptr(oe + (bos * H + i_h) * S, (T, S), (H*S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0))
# [BT, BS]
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
b_oi = tl.dot(m_i, b_s)
b_oe = tl.dot(m_e, b_s)
tl.store(p_oi, b_oi.to(p_oi.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
tl.store(p_oe, b_oe.to(p_oe.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1))
def chunk_rwkv6_fwd_cumsum(
g: torch.Tensor,
chunk_size: int,
offsets: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
head_first: bool = True
) -> torch.Tensor:
if head_first:
B, H, T, S = g.shape
else:
B, T, H, S = g.shape
BT = chunk_size
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
gi, ge = torch.empty_like(g, dtype=torch.float), torch.empty_like(g, dtype=torch.float)
def grid(meta): return (triton.cdiv(meta['S'], meta['BS']), NT, B * H)
# keep cummulative normalizer in fp32
chunk_rwkv6_fwd_cumsum_kernel[grid](
g,
gi,
ge,
offsets,
indices,
T=T,
H=H,
S=S,
BT=BT,
HEAD_FIRST=head_first
)
return gi, ge
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages)
for BK in [32, 64]
for num_warps in [1, 2, 4, 8]
for num_stages in [2, 3, 4]
],
key=['BC'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_fwd_A_kernel_intra_sub_inter(
q,
k,
gi, # cumulative decay inclusive
ge, # cumulative decay exclusive
A,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
BT: tl.constexpr,
BC: tl.constexpr,
BK: tl.constexpr,
NC: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_i, i_j = i_c // NC, i_c % NC
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
if i_t * BT + i_i * BC >= T:
return
if i_i <= i_j:
return
m_i = i_t * BT + i_i * BC + tl.arange(0, BC) < T
b_A = tl.zeros([BC, BC], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gq = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC - 1) * K + o_k, BK), BK)
else:
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gq = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_k = tl.make_block_ptr(k + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
p_gk = tl.make_block_ptr(gi + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
p_gn = gi + (bos + i_t * BT + i_i * BC - 1) * H*K + i_h * K + o_k
# [BK,]
b_gn = tl.load(p_gn, mask=m_k, other=0)
# [BC, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_gq = tl.where(m_i[:, None] & m_k, tl.load(p_gq, boundary_check=(0, 1)), float('-inf'))
b_qg = b_q * exp(b_gq - b_gn[None, :]) * scale
# [BK, BC]
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_kg = b_k * exp(b_gn[:, None] - b_gk)
# [BC, BC] using tf32 to improve precision here.
b_A += tl.dot(b_qg, b_kg)
if HEAD_FIRST:
p_A = tl.make_block_ptr(A + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
else:
p_A = tl.make_block_ptr(A + (bos*H + i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
tl.store(p_A, b_A.to(A.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
],
key=['BK', 'BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra(
q,
k,
gi,
ge,
u,
A,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
BT: tl.constexpr,
BC: tl.constexpr,
BK: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_t, i_i, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_j = i_i
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
if i_t * BT + i_i * BC >= T:
return
o_i = tl.arange(0, BC)
o_k = tl.arange(0, BK)
m_k = o_k < K
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
if HEAD_FIRST:
o_A = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_j * BC
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK)
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK)
p_gk = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK)
else:
o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BT + i_h * BT + i_j * BC
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0))
p_qj = q + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k
p_kj = k + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k
p_gk = gi + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k
b_q = tl.load(p_q, boundary_check=(0, 1))
b_g = tl.load(p_g, boundary_check=(0, 1))
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (0,), (BK,), (0,))
b_u = tl.load(p_u, boundary_check=(0,))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32)
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32)
b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32)
b_A = tl.sum(b_q * b_kj[None, :] * exp(b_g - b_gk[None, :]), 1)
b_A = tl.where(o_i > j, b_A * scale, 0.)
b_A = tl.where(o_i != j, b_A, tl.sum(b_qj * b_kj * b_u * scale))
tl.store(A + o_A + j, b_A, mask=m_A)
p_qj += K if HEAD_FIRST else H*K
p_kj += K if HEAD_FIRST else H*K
p_gk += K if HEAD_FIRST else H*K
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
],
key=['BC', 'BK'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra_split(
q,
k,
gi,
ge,
u,
A,
offsets,
indices,
scale,
B: tl.constexpr,
T,
H: tl.constexpr,
K: tl.constexpr,
BT: tl.constexpr,
BC: tl.constexpr,
BK: tl.constexpr,
NC: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_tc, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_t, i_i = i_tc // NC, i_tc % NC
i_j = i_i
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
all = T
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
all = B * T
if i_t * BT + i_i * BC >= T:
return
o_i = tl.arange(0, BC)
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
if HEAD_FIRST:
o_A = (i_k * B*H + i_bh) * T * BC + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BC
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK)
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK)
p_gk = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK)
else:
o_A = (i_k * all + bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BC + i_h * BC
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_qj = q + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k
p_kj = k + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k
p_gk = gi + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k
b_q = tl.load(p_q, boundary_check=(0, 1))
b_g = tl.load(p_g, boundary_check=(0, 1))
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (i_k * BK), (BK,), (0,))
b_u = tl.load(p_u, boundary_check=(0,))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32)
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32)
b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32)
b_A = tl.sum(b_q * b_kj[None, :] * exp(b_g - b_gk[None, :]), 1)
b_A = tl.where(o_i > j, b_A * scale, 0.)
b_A = tl.where(o_i != j, b_A, tl.sum(b_qj * b_kj * b_u * scale))
tl.store(A + o_A + j, b_A, mask=m_A)
p_qj += K if HEAD_FIRST else H*K
p_kj += K if HEAD_FIRST else H*K
p_gk += K if HEAD_FIRST else H*K
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
],
key=['BC'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra_merge(
A,
A2,
offsets,
indices,
T,
B: tl.constexpr,
H: tl.constexpr,
BT: tl.constexpr,
BC: tl.constexpr,
NK: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
all = T
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
all = B * T
if i_t * BT + i_c * BC >= T:
return
b_A = tl.zeros([BC, BC], dtype=tl.float32)
for i_k in range(0, NK):
if HEAD_FIRST:
p_A = tl.make_block_ptr(A + (i_k*B*H+i_bh)*T*BC, (T, BC), (BC, 1), (i_t*BT + i_c*BC, 0), (BC, BC), (1, 0))
else:
p_A = tl.make_block_ptr(A + (i_k*all+bos)*H*BC+i_h*BC, (T, BC), (H*BC, 1), (i_t*BT + i_c*BC, 0), (BC, BC), (1, 0))
b_A += tl.load(p_A, boundary_check=(0, 1))
if HEAD_FIRST:
p_A2 = tl.make_block_ptr(A2 + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0))
else:
p_A2 = tl.make_block_ptr(A2 + (bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0))
tl.store(p_A2, b_A.to(A2.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for BK in BK_LIST
for BV in BV_LIST
for num_warps in [1, 2, 4, 8]
for num_stages in [2, 3, 4]
],
key=['BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_bwd_kernel_dh(
q,
gi,
ge,
do,
dh,
dht,
dh0,
offsets,
chunk_offsets,
scale,
T,
HQ: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
NG: tl.constexpr,
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
USE_FINAL_STATE_GRADIENT: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_bg = i_nh // NG
i_n, i_hq = i_nh // HQ, i_nh % HQ
i_h = i_hq // NG
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
NT = tl.cdiv(T, BT)
boh = i_n * NT
# [BK, BV]
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
if USE_FINAL_STATE_GRADIENT:
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
for i_t in range(NT - 1, -1, -1):
if HEAD_FIRST:
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
last_idx = min(i_t * BT + BT, T) - 1
# [BK, BT]
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
# [BT, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
if HEAD_FIRST:
p_gk = tl.make_block_ptr(ge + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gi + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
else:
p_gk = tl.make_block_ptr(ge + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gi + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_q = (b_q * exp(b_gk) * scale).to(b_q.dtype)
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
b_dh *= exp(b_gk_last)[:, None]
b_dh += tl.dot(b_q, b_do)
if STORE_INITIAL_STATE_GRADIENT:
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps)
for num_warps in [1, 2, 4, 8]
],
key=['BK', 'NC', 'BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_bwd_kernel_intra(
q,
k,
gi,
ge,
dA,
dq,
dk,
offsets,
indices,
T,
H: tl.constexpr,
K: tl.constexpr,
BT: tl.constexpr,
BC: tl.constexpr,
BK: tl.constexpr,
NC: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_t, i_i = i_c // NC, i_c % NC
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
else:
bos, eos = i_b * T, i_b * T + T
T = eos - bos
if i_t * BT + i_i * BC >= T:
return
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
if HEAD_FIRST:
p_ge = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
p_ge = tl.make_block_ptr(ge + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
# [BC, BK]
b_ge = tl.load(p_ge, boundary_check=(0, 1))
b_dq = tl.zeros([BC, BK], dtype=tl.float32)
if i_i > 0:
if HEAD_FIRST:
p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC - 1) * K + o_k, BK), BK)
else:
p_gn = gi + (bos + i_t * BT + i_i * BC - 1) * H*K + i_h*K + o_k
# [BK,]
b_gn = tl.load(p_gn, mask=m_k, other=0)
for i_j in range(0, i_i):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
else:
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t*BT+i_j*BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t*BT+i_j*BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA+(bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t*BT+i_i*BC, i_j * BC), (BC, BC), (1, 0))
# [BC, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_kg = b_k * exp(b_gn[None, :] - b_gk)
# [BC, BC]
b_dA = tl.load(p_dA, boundary_check=(0, 1))
# [BC, BK]
b_dq += tl.dot(b_dA, b_kg)
b_dq *= exp(b_ge - b_gn[None, :])
o_i = tl.arange(0, BC)
m_dA = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
if HEAD_FIRST:
o_dA = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_i * BC
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK)
p_gkj = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK)
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
o_dA = bos*H*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BT + i_h * BT + i_i * BC
p_kj = k + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k
p_gkj = gi + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k
p_dq = tl.make_block_ptr(dq + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
# [BC,]
b_dA = tl.load(dA + o_dA + j, mask=m_dA, other=0)
# [BK,]
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32)
b_gkj = tl.load(p_gkj, mask=m_k, other=0).to(tl.float32)
# [BC, BK]
m_i = o_i[:, None] > j
# [BC, BK]
# (SY 09/17) important to not use bf16 here to have a good precision.
b_dq += tl.where(m_i, b_dA[:, None] * b_kj[None, :] * exp(b_ge - b_gkj[None, :]), 0.)
p_kj += K if HEAD_FIRST else H*K
p_gkj += K if HEAD_FIRST else H*K
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.debug_barrier()
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(gi + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
# [BC, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_dk = tl.zeros([BC, BK], dtype=tl.float32)
NC = min(NC, tl.cdiv(T - i_t * BT, BC))
if i_i < NC - 1:
if HEAD_FIRST:
p_gn = gi + i_bh * T*K + (min(i_t * BT + i_i * BC + BC, T) - 1)*K + o_k
p_gn = tl.max_contiguous(tl.multiple_of(p_gn, BK), BK)
else:
p_gn = gi + (bos + min(i_t * BT + i_i * BC + BC, T) - 1) * H*K + i_h*K + o_k
# [BK,]
b_gn = tl.load(p_gn, mask=m_k, other=0)
for i_j in range(i_i + 1, NC):
m_j = (i_t * BT + i_j * BC + tl.arange(0, BC)) < T
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_gq = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k*BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T*BT, (BT, T), (1, BT), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
else:
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_j * BC, i_k*BK), (BC, BK), (1, 0))
p_gq = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_j * BC, i_k*BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + (bos*H+i_h)*BT, (BT, T), (1, H*BT), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
# [BC, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_gq = tl.where(m_j[:, None] & m_k, tl.load(p_gq, boundary_check=(0, 1)), float('-inf'))
b_qg = b_q * exp(b_gq - b_gn[None, :])
# [BC, BC]
b_dA = tl.load(p_dA, boundary_check=(0, 1))
# [BC, BK]
# (SY 09/17) important to not use bf16 here to have a good precision.
b_dk += tl.dot(b_dA, b_qg)
b_dk *= exp(b_gn[None, :] - b_gk)
if HEAD_FIRST:
o_dA = i_bh * T*BT + (i_t * BT + i_i * BC) * BT + i_i * BC + tl.arange(0, BC)
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK)
p_gqj = tl.max_contiguous(tl.multiple_of(ge + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK)
p_dk = tl.make_block_ptr(dk + i_bh*T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
o_dA = bos*H*BT + (i_t * BT + i_i * BC) * H*BT + i_h * BT + i_i * BC + tl.arange(0, BC)
p_qj = q + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k
p_gqj = ge + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k
p_dk = tl.make_block_ptr(dk + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
# [BC,]
b_dA = tl.load(dA + o_dA + j * (1 if HEAD_FIRST else H) * BT)
# [BK,]
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32)
b_gqj = tl.load(p_gqj, mask=m_k, other=0).to(tl.float32)
# [BC, BK]
m_i = o_i[:, None] < j
b_dk += tl.where(m_i, b_dA[:, None] * b_qj[None, :] * exp(b_gqj[None, :] - b_gk), 0.)
p_qj += K if HEAD_FIRST else H*K
p_gqj += K if HEAD_FIRST else H*K
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps)
for BK in BK_LIST
for BV in BV_LIST
for num_warps in [2, 4, 8]
],
key=['BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_rwkv6_bwd_kernel_inter(
q,
k,
v,
h,
gi,
ge,
u,
do,
dh,
dA,
dq,
dk,
dq2,
dk2,
dg,
du,
offsets,
indices,
scale,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
if HEAD_FIRST:
p_gk = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_gi = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_gn = tl.max_contiguous(tl.multiple_of(gi + i_bh * T*K + (min(T, i_t * BT + BT)-1) * K + o_k, BK), BK)
else:
p_gk = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_gi = tl.make_block_ptr(gi + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_gn = gi + (bos + min(T, i_t * BT + BT)-1) * H*K + i_h * K + o_k
b_gn = tl.load(p_gn, mask=m_k, other=0)
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_dgk = tl.zeros([BK,], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
if HEAD_FIRST:
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
else:
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BV, BK]
b_h = tl.load(p_h, boundary_check=(0, 1))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
# [BK]
b_dgk += tl.sum(b_h * b_dh, axis=0)
# [BT, BK]
b_dq += tl.dot(b_do, b_h.to(b_do.dtype))
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype))
b_dgk *= exp(b_gn)
b_dq *= scale
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_gi = tl.load(p_gi, boundary_check=(0, 1))
b_dq = b_dq * exp(b_gk)
b_dk = b_dk * exp(b_gn[None, :] - b_gi)
o_i = tl.arange(0, BT)
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dA_dig = dA + (i_bh * T + i_t * BT + o_i) * BT + o_i
else:
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dq = tl.make_block_ptr(dq + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dA_dig = dA + ((bos + i_t * BT + o_i) * H + i_h) * BT + o_i
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_dgk += tl.sum(b_dk * b_k, axis=0)
b_dq += tl.load(p_dq, boundary_check=(0, 1))
b_dk += tl.load(p_dk, boundary_check=(0, 1))
b_dg = b_q * b_dq - b_k * b_dk
b_dg = b_dg - tl.cumsum(b_dg, axis=0) + tl.sum(b_dg, axis=0)[None, :] + b_dgk[None, :] - b_q * b_dq
# [BT,]
b_dA_dig = tl.load(p_dA_dig, mask=(i_t * BT + o_i) < T, other=0)
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (i_k * BK,), (BK,), (0,))
b_u = tl.load(p_u, boundary_check=(0,))
# scale is already applied to b_dA_diag
b_dq += (b_dA_dig[:, None] * b_u[None, :] * b_k)
b_dk += (b_dA_dig[:, None] * b_u[None, :] * b_q)
b_du = tl.sum(b_dA_dig[:, None] * b_q * b_k, axis=0)
p_du = tl.make_block_ptr(du + (i_tg * H + i_h) * K, (K,), (1,), (i_k * BK,), (BK,), (0,))
tl.store(p_du, b_du, boundary_check=(0,))
if HEAD_FIRST:
p_dq = tl.make_block_ptr(dq2 + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk2 + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dg = tl.make_block_ptr(dg + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
else:
p_dq = tl.make_block_ptr(dq2 + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk2 + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dg = tl.make_block_ptr(dg + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
def chunk_rwkv6_fwd_intra(
q: torch.Tensor,
k: torch.Tensor,
gi: torch.Tensor,
ge: torch.Tensor,
u: torch.Tensor,
scale: float,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
):
if head_first:
B, H, T, K = k.shape
else:
B, T, H, K = k.shape
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
BC = min(16, BT)
NC = triton.cdiv(BT, BC)
A = q.new_empty(B, *((H, T) if head_first else (T, H)), BT, dtype=torch.float)
grid = (NT, NC * NC, B * H)
chunk_rwkv6_fwd_A_kernel_intra_sub_inter[grid](
q,
k,
gi,
ge,
A,
offsets,
indices,
scale,
T=T,
H=H,
K=K,
BT=BT,
BC=BC,
NC=NC,
HEAD_FIRST=head_first
)
grid = (NT, NC, B * H)
# load the entire [BC, K] blocks into SRAM at once
if K <= 256:
BK = triton.next_power_of_2(K)
chunk_rwkv6_fwd_A_kernel_intra_sub_intra[grid](
q,
k,
gi,
ge,
u,
A,
offsets,
indices,
scale,
T=T,
H=H,
K=K,
BT=BT,
BC=BC,
BK=BK,
HEAD_FIRST=head_first
)
# split then merge
else:
BK = min(128, triton.next_power_of_2(K))
NK = triton.cdiv(K, BK)
A_intra = q.new_empty(NK, B, *((H, T) if head_first else (T, H)), BC, dtype=torch.float)
grid = (NK, NT * NC, B * H)
chunk_rwkv6_fwd_A_kernel_intra_sub_intra_split[grid](
q,
k,
gi,
ge,
u,
A_intra,
offsets,
indices,
scale,
B=B,
T=T,
H=H,
K=K,
BT=BT,
BC=BC,
BK=BK,
NC=NC,
HEAD_FIRST=head_first
)
grid = (NT, NC, B * H)
chunk_rwkv6_fwd_A_kernel_intra_sub_intra_merge[grid](
A_intra,
A,
offsets,
indices,
B=B,
T=T,
H=H,
BT=BT,
BC=BC,
NK=NK,
HEAD_FIRST=head_first
)
return A
def chunk_rwkv6_bwd_dh(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
gi: torch.Tensor,
ge: torch.Tensor,
do: torch.Tensor,
h0: torch.Tensor,
dht: torch.Tensor,
scale: float,
offsets: Optional[torch.Tensor] = None,
indices: Optional[torch.Tensor] = None,
head_first: bool = True,
chunk_size: int = 64,
states_in_fp32: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
HQ = q.shape[1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
HQ = q.shape[2]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
# N: the actual number of sequences in the batch with either equal or variable lengths
# NG: number of groups in GQA
if offsets is None:
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
else:
N, NT = len(offsets) - 1, len(indices)
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
NG = HQ // H
if head_first:
dh = k.new_empty(B, HQ, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
else:
dh = k.new_empty(B, NT, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
chunk_rwkv6_bwd_kernel_dh[grid](
q=q,
gi=gi,
ge=ge,
do=do,
dh=dh,
dht=dht,
dh0=dh0,
offsets=offsets,
chunk_offsets=chunk_offsets,
scale=scale,
T=T,
HQ=HQ,
H=H,
K=K,
V=V,
BT=BT,
NG=NG,
HEAD_FIRST=head_first
)
return dh, dh0
def chunk_rwkv6_bwd_dqk_intra(
q: torch.Tensor,
k: torch.Tensor,
gi: torch.Tensor,
ge: torch.Tensor,
dA: torch.Tensor,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
):
if head_first:
B, H, T, K = q.shape
else:
B, T, H, K = q.shape
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
BC = min(16, BT)
BK = min(64, triton.next_power_of_2(K))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
NC = triton.cdiv(BT, BC)
NK = triton.cdiv(K, BK)
dq = torch.empty_like(q, dtype=torch.float)
dk = torch.empty_like(k, dtype=torch.float)
grid = (NK, NT * NC, B * H)
chunk_rwkv6_bwd_kernel_intra[grid](
q,
k,
gi,
ge,
dA,
dq,
dk,
offsets,
indices,
T=T,
H=H,
K=K,
BT=BT,
BC=BC,
BK=BK,
NC=NC,
HEAD_FIRST=head_first
)
return dq, dk
def chunk_rwkv6_bwd_dqkgu(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
h: torch.Tensor,
g: torch.Tensor,
gi: torch.Tensor,
ge: torch.Tensor,
u: torch.Tensor,
do: torch.Tensor,
dh: torch.Tensor,
dA: torch.Tensor,
dq: torch.Tensor,
dk: torch.Tensor,
scale: float,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
dq2 = torch.empty_like(dq)
dk2 = torch.empty_like(dk)
dg = torch.empty_like(g)
du = u.new_empty(B * NT, H, K, dtype=torch.float)
def grid(meta): return (triton.cdiv(K, meta['BK']), NT, B * H)
chunk_rwkv6_bwd_kernel_inter[grid](
q,
k,
v,
h,
gi,
ge,
u,
do,
dh,
dA,
dq,
dk,
dq2,
dk2,
dg,
du,
offsets,
indices,
scale,
T=T,
H=H,
K=K,
V=V,
BT=BT,
HEAD_FIRST=head_first
)
du = du.sum(0)
return dq2, dk2, dg, du
def chunk_rwkv6_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
u: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
output_final_state: bool,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
gi, ge = chunk_rwkv6_fwd_cumsum(g, chunk_size=chunk_size, offsets=offsets, indices=indices, head_first=head_first)
h, ht = chunk_fwd_h(
k=k,
v=v,
g=None,
gk=gi,
gv=None,
h0=initial_state,
output_final_state=output_final_state,
offsets=offsets,
head_first=head_first,
chunk_size=chunk_size,
states_in_fp32=True
)
# the intra A is kept in fp32
# the computation has very marginal effect on the entire throughput
A = chunk_rwkv6_fwd_intra(
q=q,
k=k,
gi=gi,
ge=ge,
u=u,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
o = chunk_gla_fwd_o_gk(
q=q,
v=v,
g=ge,
A=A,
h=h,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
return A, h, ht, o
def chunk_rwkv6_bwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
u: torch.Tensor,
scale: float,
initial_state: torch.Tensor,
A: torch.Tensor,
do: torch.Tensor,
dht: torch.Tensor,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
):
gi, ge = chunk_rwkv6_fwd_cumsum(g, chunk_size=chunk_size, offsets=offsets, indices=indices, head_first=head_first)
h, _ = chunk_fwd_h(
k=k,
v=v,
g=None,
gk=gi,
gv=None,
h0=initial_state,
output_final_state=False,
offsets=offsets,
head_first=head_first,
chunk_size=chunk_size,
states_in_fp32=True
)
dh, dh0 = chunk_rwkv6_bwd_dh(
q=q,
k=k,
v=v,
gi=gi,
ge=ge,
do=do,
h0=initial_state,
dht=dht,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size,
states_in_fp32=True
)
# dq dk in fp32
dA = chunk_gla_bwd_dA(
v=v,
do=do,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
dv = chunk_gla_bwd_dv(
k=k,
g=gi,
A=A,
do=do,
dh=dh,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
dq, dk = chunk_rwkv6_bwd_dqk_intra(
q=q,
k=k,
gi=gi,
ge=ge,
dA=dA,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
dq, dk, dg, du = chunk_rwkv6_bwd_dqkgu(
q=q,
k=k,
v=v,
h=h,
g=g,
gi=gi,
ge=ge,
u=u,
do=do,
dh=dh,
dA=dA,
dq=dq,
dk=dk,
scale=scale,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
return dq, dk, dv, dg, du, dh0
class ChunkRWKV6Function(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(
ctx,
q,
k,
v,
g,
u,
scale,
initial_state,
output_final_state,
offsets,
head_first
):
T = q.shape[2] if head_first else q.shape[1]
chunk_size = min(32, max(32, triton.next_power_of_2(T))) if check_shared_mem() \
else min(64, max(32, triton.next_power_of_2(T)))
# 2-d indices denoting the offsets of chunks in each sequence
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
indices = None
if offsets is not None:
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()])
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
A, h, ht, o = chunk_rwkv6_fwd(
q=q,
k=k,
v=v,
g=g,
u=u,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
ctx.save_for_backward(q, k, v, g, initial_state, A, u)
ctx.chunk_size = chunk_size
ctx.scale = scale
ctx.offsets = offsets
ctx.indices = indices
ctx.head_first = head_first
return o, ht
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(ctx, do, dht):
q, k, v, g, initial_state, A, u = ctx.saved_tensors
chunk_size, scale, offsets, indices, head_first = ctx.chunk_size, ctx.scale, ctx.offsets, ctx.indices, ctx.head_first
dq, dk, dv, dg, du, dh0 = chunk_rwkv6_bwd(
q=q,
k=k,
v=v,
g=g,
u=u,
scale=scale,
initial_state=initial_state,
A=A,
do=do,
dht=dht,
offsets=offsets,
indices=indices,
head_first=head_first,
chunk_size=chunk_size
)
return dq.to(q), dk.to(k), dv.to(v), dg.to(g), du.to(u), None, dh0, None, None, None
@torch.compiler.disable
def chunk_rwkv6(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
u: torch.Tensor,
scale: Optional[int] = None,
initial_state: torch.Tensor = None,
output_final_state: bool = False,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
k (torch.Tensor):
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
v (torch.Tensor):
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
g (torch.Tensor):
Forget gates of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` applied to keys.
u (torch.Tensor):
bonus representations of shape `[H]`.
scale (Optional[int]):
Scale factor for the attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[N, H, K, V]` for `N` input sequences.
For equal-length input sequences, `N` equals the batch size `B`.
Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
Default: `True`.
Returns:
o (torch.Tensor):
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
final_state (Optional[torch.Tensor]):
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
Examples::
>>> import torch
>>> import torch.nn.functional as F
>>> from einops import rearrange
>>> from fla.ops.rwkv6 import chunk_rwkv6
# inputs with equal lengths
>>> B, T, H, K, V = 4, 2048, 4, 512, 512
>>> q = torch.randn(B, T, H, K, device='cuda')
>>> k = torch.randn(B, T, H, K, device='cuda')
>>> v = torch.randn(B, T, H, V, device='cuda')
>>> g = F.logsigmoid(torch.randn(B, T, H, K, device='cuda'))
>>> u = torch.randn(H, K, device='cuda')
>>> h0 = torch.randn(B, H, K, V, device='cuda')
>>> o, ht = chunk_rwkv6(q, k, v, g, u,
initial_state=h0,
output_final_state=True,
head_first=False)
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
>>> q, k, v, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, g))
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
>>> o_var, ht_var = chunk_rwkv6(q, k, v, g, u,
initial_state=h0,
output_final_state=True,
cu_seqlens=cu_seqlens,
head_first=False)
>>> assert o.allclose(o_var.view(o.shape))
>>> assert ht.allclose(ht_var)
"""
if cu_seqlens is not None:
if q.shape[0] != 1:
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
f"Please flatten variable-length inputs before processing.")
if head_first:
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.")
if scale is None:
scale = q.shape[-1] ** -0.5
o, final_state = ChunkRWKV6Function.apply(
q,
k,
v,
g,
u,
scale,
initial_state,
output_final_state,
cu_seqlens,
head_first
)
return o, final_state