|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import triton |
|
import triton.language as tl |
|
|
|
from fla.ops.common.chunk_h import chunk_fwd_h |
|
from fla.ops.gla.chunk import chunk_gla_bwd_dA, chunk_gla_bwd_dv, chunk_gla_fwd_o_gk |
|
from fla.ops.utils.op import exp |
|
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard, use_cuda_graph |
|
|
|
BK_LIST = [32, 64] if check_shared_mem() else [16, 32] |
|
BV_LIST = [32, 64] if check_shared_mem() else [16, 32] |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({'BS': BS}, num_warps=num_warps, num_stages=num_stages) |
|
for BS in [16, 32, 64] |
|
for num_warps in [4, 8, 16] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['S', 'BT'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_fwd_cumsum_kernel( |
|
s, |
|
oi, |
|
oe, |
|
offsets, |
|
indices, |
|
T, |
|
H: tl.constexpr, |
|
S: tl.constexpr, |
|
BT: tl.constexpr, |
|
BS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
): |
|
i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
o_i = tl.arange(0, BT) |
|
m_i = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.).to(tl.float32) |
|
m_e = tl.where(o_i[:, None] > o_i[None, :], 1., 0.).to(tl.float32) |
|
|
|
if HEAD_FIRST: |
|
p_s = tl.make_block_ptr(s + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) |
|
p_oi = tl.make_block_ptr(oi + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) |
|
p_oe = tl.make_block_ptr(oe + i_bh * T*S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) |
|
else: |
|
p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H*S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) |
|
p_oi = tl.make_block_ptr(oi + (bos * H + i_h) * S, (T, S), (H*S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) |
|
p_oe = tl.make_block_ptr(oe + (bos * H + i_h) * S, (T, S), (H*S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) |
|
|
|
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32) |
|
b_oi = tl.dot(m_i, b_s) |
|
b_oe = tl.dot(m_e, b_s) |
|
tl.store(p_oi, b_oi.to(p_oi.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
tl.store(p_oe, b_oe.to(p_oe.dtype.element_ty, fp_downcast_rounding="rtne"), boundary_check=(0, 1)) |
|
|
|
|
|
def chunk_rwkv6_fwd_cumsum( |
|
g: torch.Tensor, |
|
chunk_size: int, |
|
offsets: Optional[torch.Tensor] = None, |
|
indices: Optional[torch.Tensor] = None, |
|
head_first: bool = True |
|
) -> torch.Tensor: |
|
if head_first: |
|
B, H, T, S = g.shape |
|
else: |
|
B, T, H, S = g.shape |
|
BT = chunk_size |
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
|
|
gi, ge = torch.empty_like(g, dtype=torch.float), torch.empty_like(g, dtype=torch.float) |
|
def grid(meta): return (triton.cdiv(meta['S'], meta['BS']), NT, B * H) |
|
|
|
chunk_rwkv6_fwd_cumsum_kernel[grid]( |
|
g, |
|
gi, |
|
ge, |
|
offsets, |
|
indices, |
|
T=T, |
|
H=H, |
|
S=S, |
|
BT=BT, |
|
HEAD_FIRST=head_first |
|
) |
|
return gi, ge |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({'BK': BK}, num_warps=num_warps, num_stages=num_stages) |
|
for BK in [32, 64] |
|
for num_warps in [1, 2, 4, 8] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BC'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_fwd_A_kernel_intra_sub_inter( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
A, |
|
offsets, |
|
indices, |
|
scale, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
BK: tl.constexpr, |
|
NC: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
i_i, i_j = i_c // NC, i_c % NC |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
if i_t * BT + i_i * BC >= T: |
|
return |
|
if i_i <= i_j: |
|
return |
|
|
|
m_i = i_t * BT + i_i * BC + tl.arange(0, BC) < T |
|
|
|
b_A = tl.zeros([BC, BC], dtype=tl.float32) |
|
for i_k in range(tl.cdiv(K, BK)): |
|
o_k = i_k * BK + tl.arange(0, BK) |
|
m_k = o_k < K |
|
|
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gq = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) |
|
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) |
|
p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC - 1) * K + o_k, BK), BK) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gq = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) |
|
p_gk = tl.make_block_ptr(gi + (bos*H+i_h)*K, (K, T), (1, H*K), (i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1)) |
|
p_gn = gi + (bos + i_t * BT + i_i * BC - 1) * H*K + i_h * K + o_k |
|
|
|
|
|
b_gn = tl.load(p_gn, mask=m_k, other=0) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_gq = tl.where(m_i[:, None] & m_k, tl.load(p_gq, boundary_check=(0, 1)), float('-inf')) |
|
b_qg = b_q * exp(b_gq - b_gn[None, :]) * scale |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_gk = tl.load(p_gk, boundary_check=(0, 1)) |
|
b_kg = b_k * exp(b_gn[:, None] - b_gk) |
|
|
|
b_A += tl.dot(b_qg, b_kg) |
|
|
|
if HEAD_FIRST: |
|
p_A = tl.make_block_ptr(A + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) |
|
else: |
|
p_A = tl.make_block_ptr(A + (bos*H + i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) |
|
tl.store(p_A, b_A.to(A.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=1), |
|
triton.Config({}, num_warps=2), |
|
triton.Config({}, num_warps=4), |
|
triton.Config({}, num_warps=8), |
|
], |
|
key=['BK', 'BT'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
u, |
|
A, |
|
offsets, |
|
indices, |
|
scale, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
BK: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_t, i_i, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
i_j = i_i |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
|
|
if i_t * BT + i_i * BC >= T: |
|
return |
|
|
|
o_i = tl.arange(0, BC) |
|
o_k = tl.arange(0, BK) |
|
m_k = o_k < K |
|
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T |
|
if HEAD_FIRST: |
|
o_A = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_j * BC |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) |
|
p_g = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) |
|
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) |
|
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) |
|
p_gk = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) |
|
else: |
|
o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BT + i_h * BT + i_j * BC |
|
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) |
|
p_g = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, 0), (BC, BK), (1, 0)) |
|
p_qj = q + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k |
|
p_kj = k + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k |
|
p_gk = gi + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_g = tl.load(p_g, boundary_check=(0, 1)) |
|
|
|
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (0,), (BK,), (0,)) |
|
b_u = tl.load(p_u, boundary_check=(0,)) |
|
for j in range(0, min(BC, T - i_t * BT - i_i * BC)): |
|
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32) |
|
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32) |
|
b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32) |
|
b_A = tl.sum(b_q * b_kj[None, :] * exp(b_g - b_gk[None, :]), 1) |
|
b_A = tl.where(o_i > j, b_A * scale, 0.) |
|
b_A = tl.where(o_i != j, b_A, tl.sum(b_qj * b_kj * b_u * scale)) |
|
tl.store(A + o_A + j, b_A, mask=m_A) |
|
p_qj += K if HEAD_FIRST else H*K |
|
p_kj += K if HEAD_FIRST else H*K |
|
p_gk += K if HEAD_FIRST else H*K |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=1), |
|
triton.Config({}, num_warps=2), |
|
triton.Config({}, num_warps=4), |
|
triton.Config({}, num_warps=8), |
|
], |
|
key=['BC', 'BK'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra_split( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
u, |
|
A, |
|
offsets, |
|
indices, |
|
scale, |
|
B: tl.constexpr, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
BK: tl.constexpr, |
|
NC: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_k, i_tc, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
i_t, i_i = i_tc // NC, i_tc % NC |
|
i_j = i_i |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
all = T |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
all = B * T |
|
|
|
if i_t * BT + i_i * BC >= T: |
|
return |
|
|
|
o_i = tl.arange(0, BC) |
|
o_k = i_k * BK + tl.arange(0, BK) |
|
m_k = o_k < K |
|
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T |
|
|
|
if HEAD_FIRST: |
|
o_A = (i_k * B*H + i_bh) * T * BC + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BC |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_g = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) |
|
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) |
|
p_gk = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_j * BC) * K + o_k, BK), BK) |
|
else: |
|
o_A = (i_k * all + bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BC + i_h * BC |
|
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_g = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_qj = q + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k |
|
p_kj = k + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k |
|
p_gk = gi + (bos + i_t * BT + i_j * BC) * H*K + i_h * K + o_k |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_g = tl.load(p_g, boundary_check=(0, 1)) |
|
|
|
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (i_k * BK), (BK,), (0,)) |
|
b_u = tl.load(p_u, boundary_check=(0,)) |
|
for j in range(0, min(BC, T - i_t * BT - i_i * BC)): |
|
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32) |
|
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32) |
|
b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32) |
|
b_A = tl.sum(b_q * b_kj[None, :] * exp(b_g - b_gk[None, :]), 1) |
|
b_A = tl.where(o_i > j, b_A * scale, 0.) |
|
b_A = tl.where(o_i != j, b_A, tl.sum(b_qj * b_kj * b_u * scale)) |
|
tl.store(A + o_A + j, b_A, mask=m_A) |
|
p_qj += K if HEAD_FIRST else H*K |
|
p_kj += K if HEAD_FIRST else H*K |
|
p_gk += K if HEAD_FIRST else H*K |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=1), |
|
triton.Config({}, num_warps=2), |
|
triton.Config({}, num_warps=4), |
|
triton.Config({}, num_warps=8), |
|
], |
|
key=['BC'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra_merge( |
|
A, |
|
A2, |
|
offsets, |
|
indices, |
|
T, |
|
B: tl.constexpr, |
|
H: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
NK: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
all = T |
|
T = eos - bos |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
all = B * T |
|
|
|
if i_t * BT + i_c * BC >= T: |
|
return |
|
|
|
b_A = tl.zeros([BC, BC], dtype=tl.float32) |
|
for i_k in range(0, NK): |
|
if HEAD_FIRST: |
|
p_A = tl.make_block_ptr(A + (i_k*B*H+i_bh)*T*BC, (T, BC), (BC, 1), (i_t*BT + i_c*BC, 0), (BC, BC), (1, 0)) |
|
else: |
|
p_A = tl.make_block_ptr(A + (i_k*all+bos)*H*BC+i_h*BC, (T, BC), (H*BC, 1), (i_t*BT + i_c*BC, 0), (BC, BC), (1, 0)) |
|
b_A += tl.load(p_A, boundary_check=(0, 1)) |
|
if HEAD_FIRST: |
|
p_A2 = tl.make_block_ptr(A2 + i_bh*T*BT, (T, BT), (BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0)) |
|
else: |
|
p_A2 = tl.make_block_ptr(A2 + (bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0)) |
|
tl.store(p_A2, b_A.to(A2.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.heuristics({ |
|
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None, |
|
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages) |
|
for BK in BK_LIST |
|
for BV in BV_LIST |
|
for num_warps in [1, 2, 4, 8] |
|
for num_stages in [2, 3, 4] |
|
], |
|
key=['BT'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_bwd_kernel_dh( |
|
q, |
|
gi, |
|
ge, |
|
do, |
|
dh, |
|
dht, |
|
dh0, |
|
offsets, |
|
chunk_offsets, |
|
scale, |
|
T, |
|
HQ: tl.constexpr, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
NG: tl.constexpr, |
|
STORE_INITIAL_STATE_GRADIENT: tl.constexpr, |
|
USE_FINAL_STATE_GRADIENT: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_bg = i_nh // NG |
|
i_n, i_hq = i_nh // HQ, i_nh % HQ |
|
i_h = i_hq // NG |
|
if USE_OFFSETS: |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
boh = tl.load(chunk_offsets + i_n).to(tl.int32) |
|
else: |
|
bos, eos = i_n * T, i_n * T + T |
|
NT = tl.cdiv(T, BT) |
|
boh = i_n * NT |
|
|
|
|
|
b_dh = tl.zeros([BK, BV], dtype=tl.float32) |
|
if USE_FINAL_STATE_GRADIENT: |
|
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32) |
|
|
|
for i_t in range(NT - 1, -1, -1): |
|
if HEAD_FIRST: |
|
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
else: |
|
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) |
|
last_idx = min(i_t * BT + BT, T) - 1 |
|
|
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
|
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
|
|
if HEAD_FIRST: |
|
p_gk = tl.make_block_ptr(ge + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_gk_last = gi + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK) |
|
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK) |
|
else: |
|
p_gk = tl.make_block_ptr(ge + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) |
|
p_gk_last = gi + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK) |
|
|
|
b_gk = tl.load(p_gk, boundary_check=(0, 1)) |
|
b_q = (b_q * exp(b_gk) * scale).to(b_q.dtype) |
|
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.) |
|
b_dh *= exp(b_gk_last)[:, None] |
|
b_dh += tl.dot(b_q, b_do) |
|
|
|
if STORE_INITIAL_STATE_GRADIENT: |
|
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) |
|
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({}, num_warps=num_warps) |
|
for num_warps in [1, 2, 4, 8] |
|
], |
|
key=['BK', 'NC', 'BT'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_bwd_kernel_intra( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
dA, |
|
dq, |
|
dk, |
|
offsets, |
|
indices, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
BT: tl.constexpr, |
|
BC: tl.constexpr, |
|
BK: tl.constexpr, |
|
NC: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
i_t, i_i = i_c // NC, i_c % NC |
|
if USE_OFFSETS: |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
else: |
|
bos, eos = i_b * T, i_b * T + T |
|
T = eos - bos |
|
if i_t * BT + i_i * BC >= T: |
|
return |
|
|
|
o_k = i_k * BK + tl.arange(0, BK) |
|
m_k = o_k < K |
|
|
|
if HEAD_FIRST: |
|
p_ge = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
else: |
|
p_ge = tl.make_block_ptr(ge + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
|
|
b_ge = tl.load(p_ge, boundary_check=(0, 1)) |
|
b_dq = tl.zeros([BC, BK], dtype=tl.float32) |
|
if i_i > 0: |
|
if HEAD_FIRST: |
|
p_gn = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC - 1) * K + o_k, BK), BK) |
|
else: |
|
p_gn = gi + (bos + i_t * BT + i_i * BC - 1) * H*K + i_h*K + o_k |
|
|
|
b_gn = tl.load(p_gn, mask=m_k, other=0) |
|
for i_j in range(0, i_i): |
|
if HEAD_FIRST: |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_dA = tl.make_block_ptr(dA + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) |
|
else: |
|
p_k = tl.make_block_ptr(k+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t*BT+i_j*BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gk = tl.make_block_ptr(gi+(bos*H+i_h)*K, (T, K), (H*K, 1), (i_t*BT+i_j*BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_dA = tl.make_block_ptr(dA+(bos*H+i_h)*BT, (T, BT), (H*BT, 1), (i_t*BT+i_i*BC, i_j * BC), (BC, BC), (1, 0)) |
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_gk = tl.load(p_gk, boundary_check=(0, 1)) |
|
b_kg = b_k * exp(b_gn[None, :] - b_gk) |
|
|
|
b_dA = tl.load(p_dA, boundary_check=(0, 1)) |
|
|
|
b_dq += tl.dot(b_dA, b_kg) |
|
b_dq *= exp(b_ge - b_gn[None, :]) |
|
|
|
o_i = tl.arange(0, BC) |
|
m_dA = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T |
|
if HEAD_FIRST: |
|
o_dA = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_i * BC |
|
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK) |
|
p_gkj = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK) |
|
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
else: |
|
o_dA = bos*H*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * H*BT + i_h * BT + i_i * BC |
|
p_kj = k + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k |
|
p_gkj = gi + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k |
|
p_dq = tl.make_block_ptr(dq + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
|
|
for j in range(0, min(BC, T - i_t * BT - i_i * BC)): |
|
|
|
b_dA = tl.load(dA + o_dA + j, mask=m_dA, other=0) |
|
|
|
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32) |
|
b_gkj = tl.load(p_gkj, mask=m_k, other=0).to(tl.float32) |
|
|
|
m_i = o_i[:, None] > j |
|
|
|
|
|
b_dq += tl.where(m_i, b_dA[:, None] * b_kj[None, :] * exp(b_ge - b_gkj[None, :]), 0.) |
|
p_kj += K if HEAD_FIRST else H*K |
|
p_gkj += K if HEAD_FIRST else H*K |
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
tl.debug_barrier() |
|
if HEAD_FIRST: |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gk = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
else: |
|
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gk = tl.make_block_ptr(gi + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
|
|
|
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_gk = tl.load(p_gk, boundary_check=(0, 1)) |
|
b_dk = tl.zeros([BC, BK], dtype=tl.float32) |
|
|
|
NC = min(NC, tl.cdiv(T - i_t * BT, BC)) |
|
if i_i < NC - 1: |
|
if HEAD_FIRST: |
|
p_gn = gi + i_bh * T*K + (min(i_t * BT + i_i * BC + BC, T) - 1)*K + o_k |
|
p_gn = tl.max_contiguous(tl.multiple_of(p_gn, BK), BK) |
|
else: |
|
p_gn = gi + (bos + min(i_t * BT + i_i * BC + BC, T) - 1) * H*K + i_h*K + o_k |
|
|
|
|
|
b_gn = tl.load(p_gn, mask=m_k, other=0) |
|
for i_j in range(i_i + 1, NC): |
|
m_j = (i_t * BT + i_j * BC + tl.arange(0, BC)) < T |
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0)) |
|
p_gq = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT + i_j * BC, i_k*BK), (BC, BK), (1, 0)) |
|
p_dA = tl.make_block_ptr(dA + i_bh * T*BT, (BT, T), (1, BT), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1)) |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_j * BC, i_k*BK), (BC, BK), (1, 0)) |
|
p_gq = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_j * BC, i_k*BK), (BC, BK), (1, 0)) |
|
p_dA = tl.make_block_ptr(dA + (bos*H+i_h)*BT, (BT, T), (1, H*BT), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1)) |
|
|
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_gq = tl.where(m_j[:, None] & m_k, tl.load(p_gq, boundary_check=(0, 1)), float('-inf')) |
|
b_qg = b_q * exp(b_gq - b_gn[None, :]) |
|
|
|
b_dA = tl.load(p_dA, boundary_check=(0, 1)) |
|
|
|
|
|
b_dk += tl.dot(b_dA, b_qg) |
|
b_dk *= exp(b_gn[None, :] - b_gk) |
|
if HEAD_FIRST: |
|
o_dA = i_bh * T*BT + (i_t * BT + i_i * BC) * BT + i_i * BC + tl.arange(0, BC) |
|
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK) |
|
p_gqj = tl.max_contiguous(tl.multiple_of(ge + (i_bh * T + i_t * BT + i_i * BC) * K + o_k, BK), BK) |
|
p_dk = tl.make_block_ptr(dk + i_bh*T*K, (T, K), (K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
else: |
|
o_dA = bos*H*BT + (i_t * BT + i_i * BC) * H*BT + i_h * BT + i_i * BC + tl.arange(0, BC) |
|
p_qj = q + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k |
|
p_gqj = ge + (bos + i_t * BT + i_i * BC) * H*K + i_h * K + o_k |
|
p_dk = tl.make_block_ptr(dk + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0)) |
|
for j in range(0, min(BC, T - i_t * BT - i_i * BC)): |
|
|
|
b_dA = tl.load(dA + o_dA + j * (1 if HEAD_FIRST else H) * BT) |
|
|
|
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32) |
|
b_gqj = tl.load(p_gqj, mask=m_k, other=0).to(tl.float32) |
|
|
|
m_i = o_i[:, None] < j |
|
b_dk += tl.where(m_i, b_dA[:, None] * b_qj[None, :] * exp(b_gqj[None, :] - b_gk), 0.) |
|
p_qj += K if HEAD_FIRST else H*K |
|
p_gqj += K if HEAD_FIRST else H*K |
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.heuristics({ |
|
'USE_OFFSETS': lambda args: args['offsets'] is not None |
|
}) |
|
@triton.autotune( |
|
configs=[ |
|
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps) |
|
for BK in BK_LIST |
|
for BV in BV_LIST |
|
for num_warps in [2, 4, 8] |
|
], |
|
key=['BT'], |
|
use_cuda_graph=use_cuda_graph, |
|
) |
|
@triton.jit(do_not_specialize=['T']) |
|
def chunk_rwkv6_bwd_kernel_inter( |
|
q, |
|
k, |
|
v, |
|
h, |
|
gi, |
|
ge, |
|
u, |
|
do, |
|
dh, |
|
dA, |
|
dq, |
|
dk, |
|
dq2, |
|
dk2, |
|
dg, |
|
du, |
|
offsets, |
|
indices, |
|
scale, |
|
T, |
|
H: tl.constexpr, |
|
K: tl.constexpr, |
|
V: tl.constexpr, |
|
BT: tl.constexpr, |
|
BK: tl.constexpr, |
|
BV: tl.constexpr, |
|
USE_OFFSETS: tl.constexpr, |
|
HEAD_FIRST: tl.constexpr |
|
): |
|
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) |
|
i_b, i_h = i_bh // H, i_bh % H |
|
|
|
if USE_OFFSETS: |
|
i_tg = i_t |
|
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) |
|
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) |
|
T = eos - bos |
|
NT = tl.cdiv(T, BT) |
|
else: |
|
NT = tl.cdiv(T, BT) |
|
i_tg = i_b * NT + i_t |
|
bos, eos = i_b * T, i_b * T + T |
|
o_k = i_k * BK + tl.arange(0, BK) |
|
m_k = o_k < K |
|
|
|
if HEAD_FIRST: |
|
p_gk = tl.make_block_ptr(ge + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_gi = tl.make_block_ptr(gi + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_gn = tl.max_contiguous(tl.multiple_of(gi + i_bh * T*K + (min(T, i_t * BT + BT)-1) * K + o_k, BK), BK) |
|
else: |
|
p_gk = tl.make_block_ptr(ge + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_gi = tl.make_block_ptr(gi + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_gn = gi + (bos + min(T, i_t * BT + BT)-1) * H*K + i_h * K + o_k |
|
b_gn = tl.load(p_gn, mask=m_k, other=0) |
|
b_dq = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_dk = tl.zeros([BT, BK], dtype=tl.float32) |
|
b_dgk = tl.zeros([BK,], dtype=tl.float32) |
|
|
|
for i_v in range(tl.cdiv(V, BV)): |
|
if HEAD_FIRST: |
|
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_h = tl.make_block_ptr(h + i_bh * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
else: |
|
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) |
|
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) |
|
|
|
b_v = tl.load(p_v, boundary_check=(0, 1)) |
|
b_do = tl.load(p_do, boundary_check=(0, 1)) |
|
|
|
b_h = tl.load(p_h, boundary_check=(0, 1)) |
|
b_dh = tl.load(p_dh, boundary_check=(0, 1)) |
|
|
|
b_dgk += tl.sum(b_h * b_dh, axis=0) |
|
|
|
b_dq += tl.dot(b_do, b_h.to(b_do.dtype)) |
|
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype)) |
|
b_dgk *= exp(b_gn) |
|
b_dq *= scale |
|
b_gk = tl.load(p_gk, boundary_check=(0, 1)) |
|
b_gi = tl.load(p_gi, boundary_check=(0, 1)) |
|
b_dq = b_dq * exp(b_gk) |
|
b_dk = b_dk * exp(b_gn[None, :] - b_gi) |
|
|
|
o_i = tl.arange(0, BT) |
|
if HEAD_FIRST: |
|
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dA_dig = dA + (i_bh * T + i_t * BT + o_i) * BT + o_i |
|
else: |
|
p_q = tl.make_block_ptr(q + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_k = tl.make_block_ptr(k + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dq = tl.make_block_ptr(dq + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk + (bos*H+i_h)*K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dA_dig = dA + ((bos + i_t * BT + o_i) * H + i_h) * BT + o_i |
|
b_q = tl.load(p_q, boundary_check=(0, 1)) |
|
b_k = tl.load(p_k, boundary_check=(0, 1)) |
|
b_dgk += tl.sum(b_dk * b_k, axis=0) |
|
|
|
b_dq += tl.load(p_dq, boundary_check=(0, 1)) |
|
b_dk += tl.load(p_dk, boundary_check=(0, 1)) |
|
b_dg = b_q * b_dq - b_k * b_dk |
|
b_dg = b_dg - tl.cumsum(b_dg, axis=0) + tl.sum(b_dg, axis=0)[None, :] + b_dgk[None, :] - b_q * b_dq |
|
|
|
b_dA_dig = tl.load(p_dA_dig, mask=(i_t * BT + o_i) < T, other=0) |
|
|
|
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), (i_k * BK,), (BK,), (0,)) |
|
b_u = tl.load(p_u, boundary_check=(0,)) |
|
|
|
b_dq += (b_dA_dig[:, None] * b_u[None, :] * b_k) |
|
b_dk += (b_dA_dig[:, None] * b_u[None, :] * b_q) |
|
b_du = tl.sum(b_dA_dig[:, None] * b_q * b_k, axis=0) |
|
p_du = tl.make_block_ptr(du + (i_tg * H + i_h) * K, (K,), (1,), (i_k * BK,), (BK,), (0,)) |
|
tl.store(p_du, b_du, boundary_check=(0,)) |
|
|
|
if HEAD_FIRST: |
|
p_dq = tl.make_block_ptr(dq2 + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk2 + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dg = tl.make_block_ptr(dg + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
else: |
|
p_dq = tl.make_block_ptr(dq2 + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dk = tl.make_block_ptr(dk2 + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
p_dg = tl.make_block_ptr(dg + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) |
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
def chunk_rwkv6_fwd_intra( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
gi: torch.Tensor, |
|
ge: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
): |
|
if head_first: |
|
B, H, T, K = k.shape |
|
else: |
|
B, T, H, K = k.shape |
|
BT = min(chunk_size, max(16, triton.next_power_of_2(T))) |
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
BC = min(16, BT) |
|
NC = triton.cdiv(BT, BC) |
|
|
|
A = q.new_empty(B, *((H, T) if head_first else (T, H)), BT, dtype=torch.float) |
|
grid = (NT, NC * NC, B * H) |
|
chunk_rwkv6_fwd_A_kernel_intra_sub_inter[grid]( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
A, |
|
offsets, |
|
indices, |
|
scale, |
|
T=T, |
|
H=H, |
|
K=K, |
|
BT=BT, |
|
BC=BC, |
|
NC=NC, |
|
HEAD_FIRST=head_first |
|
) |
|
|
|
grid = (NT, NC, B * H) |
|
|
|
if K <= 256: |
|
BK = triton.next_power_of_2(K) |
|
chunk_rwkv6_fwd_A_kernel_intra_sub_intra[grid]( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
u, |
|
A, |
|
offsets, |
|
indices, |
|
scale, |
|
T=T, |
|
H=H, |
|
K=K, |
|
BT=BT, |
|
BC=BC, |
|
BK=BK, |
|
HEAD_FIRST=head_first |
|
) |
|
|
|
else: |
|
BK = min(128, triton.next_power_of_2(K)) |
|
NK = triton.cdiv(K, BK) |
|
A_intra = q.new_empty(NK, B, *((H, T) if head_first else (T, H)), BC, dtype=torch.float) |
|
|
|
grid = (NK, NT * NC, B * H) |
|
chunk_rwkv6_fwd_A_kernel_intra_sub_intra_split[grid]( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
u, |
|
A_intra, |
|
offsets, |
|
indices, |
|
scale, |
|
B=B, |
|
T=T, |
|
H=H, |
|
K=K, |
|
BT=BT, |
|
BC=BC, |
|
BK=BK, |
|
NC=NC, |
|
HEAD_FIRST=head_first |
|
) |
|
|
|
grid = (NT, NC, B * H) |
|
chunk_rwkv6_fwd_A_kernel_intra_sub_intra_merge[grid]( |
|
A_intra, |
|
A, |
|
offsets, |
|
indices, |
|
B=B, |
|
T=T, |
|
H=H, |
|
BT=BT, |
|
BC=BC, |
|
NK=NK, |
|
HEAD_FIRST=head_first |
|
) |
|
return A |
|
|
|
|
|
def chunk_rwkv6_bwd_dh( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
gi: torch.Tensor, |
|
ge: torch.Tensor, |
|
do: torch.Tensor, |
|
h0: torch.Tensor, |
|
dht: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.Tensor] = None, |
|
indices: Optional[torch.Tensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64, |
|
states_in_fp32: bool = False |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if head_first: |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
HQ = q.shape[1] |
|
else: |
|
B, T, H, K, V = *k.shape, v.shape[-1] |
|
HQ = q.shape[2] |
|
BT = min(chunk_size, max(16, triton.next_power_of_2(T))) |
|
|
|
|
|
if offsets is None: |
|
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None |
|
else: |
|
N, NT = len(offsets) - 1, len(indices) |
|
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1) |
|
NG = HQ // H |
|
|
|
if head_first: |
|
dh = k.new_empty(B, HQ, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float) |
|
else: |
|
dh = k.new_empty(B, NT, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float) |
|
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None |
|
|
|
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H) |
|
chunk_rwkv6_bwd_kernel_dh[grid]( |
|
q=q, |
|
gi=gi, |
|
ge=ge, |
|
do=do, |
|
dh=dh, |
|
dht=dht, |
|
dh0=dh0, |
|
offsets=offsets, |
|
chunk_offsets=chunk_offsets, |
|
scale=scale, |
|
T=T, |
|
HQ=HQ, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
NG=NG, |
|
HEAD_FIRST=head_first |
|
) |
|
return dh, dh0 |
|
|
|
|
|
def chunk_rwkv6_bwd_dqk_intra( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
gi: torch.Tensor, |
|
ge: torch.Tensor, |
|
dA: torch.Tensor, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
): |
|
if head_first: |
|
B, H, T, K = q.shape |
|
else: |
|
B, T, H, K = q.shape |
|
BT = min(chunk_size, max(16, triton.next_power_of_2(T))) |
|
BC = min(16, BT) |
|
BK = min(64, triton.next_power_of_2(K)) |
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
NC = triton.cdiv(BT, BC) |
|
NK = triton.cdiv(K, BK) |
|
|
|
dq = torch.empty_like(q, dtype=torch.float) |
|
dk = torch.empty_like(k, dtype=torch.float) |
|
grid = (NK, NT * NC, B * H) |
|
chunk_rwkv6_bwd_kernel_intra[grid]( |
|
q, |
|
k, |
|
gi, |
|
ge, |
|
dA, |
|
dq, |
|
dk, |
|
offsets, |
|
indices, |
|
T=T, |
|
H=H, |
|
K=K, |
|
BT=BT, |
|
BC=BC, |
|
BK=BK, |
|
NC=NC, |
|
HEAD_FIRST=head_first |
|
) |
|
return dq, dk |
|
|
|
|
|
def chunk_rwkv6_bwd_dqkgu( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
h: torch.Tensor, |
|
g: torch.Tensor, |
|
gi: torch.Tensor, |
|
ge: torch.Tensor, |
|
u: torch.Tensor, |
|
do: torch.Tensor, |
|
dh: torch.Tensor, |
|
dA: torch.Tensor, |
|
dq: torch.Tensor, |
|
dk: torch.Tensor, |
|
scale: float, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
): |
|
if head_first: |
|
B, H, T, K, V = *k.shape, v.shape[-1] |
|
else: |
|
B, T, H, K, V = *k.shape, v.shape[-1] |
|
BT = min(chunk_size, max(16, triton.next_power_of_2(T))) |
|
NT = triton.cdiv(T, BT) if offsets is None else len(indices) |
|
|
|
dq2 = torch.empty_like(dq) |
|
dk2 = torch.empty_like(dk) |
|
dg = torch.empty_like(g) |
|
du = u.new_empty(B * NT, H, K, dtype=torch.float) |
|
def grid(meta): return (triton.cdiv(K, meta['BK']), NT, B * H) |
|
chunk_rwkv6_bwd_kernel_inter[grid]( |
|
q, |
|
k, |
|
v, |
|
h, |
|
gi, |
|
ge, |
|
u, |
|
do, |
|
dh, |
|
dA, |
|
dq, |
|
dk, |
|
dq2, |
|
dk2, |
|
dg, |
|
du, |
|
offsets, |
|
indices, |
|
scale, |
|
T=T, |
|
H=H, |
|
K=K, |
|
V=V, |
|
BT=BT, |
|
HEAD_FIRST=head_first |
|
) |
|
du = du.sum(0) |
|
return dq2, dk2, dg, du |
|
|
|
|
|
def chunk_rwkv6_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: float, |
|
initial_state: torch.Tensor, |
|
output_final_state: bool, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
gi, ge = chunk_rwkv6_fwd_cumsum(g, chunk_size=chunk_size, offsets=offsets, indices=indices, head_first=head_first) |
|
h, ht = chunk_fwd_h( |
|
k=k, |
|
v=v, |
|
g=None, |
|
gk=gi, |
|
gv=None, |
|
h0=initial_state, |
|
output_final_state=output_final_state, |
|
offsets=offsets, |
|
head_first=head_first, |
|
chunk_size=chunk_size, |
|
states_in_fp32=True |
|
) |
|
|
|
|
|
A = chunk_rwkv6_fwd_intra( |
|
q=q, |
|
k=k, |
|
gi=gi, |
|
ge=ge, |
|
u=u, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
|
|
o = chunk_gla_fwd_o_gk( |
|
q=q, |
|
v=v, |
|
g=ge, |
|
A=A, |
|
h=h, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
return A, h, ht, o |
|
|
|
|
|
def chunk_rwkv6_bwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: float, |
|
initial_state: torch.Tensor, |
|
A: torch.Tensor, |
|
do: torch.Tensor, |
|
dht: torch.Tensor, |
|
offsets: Optional[torch.LongTensor] = None, |
|
indices: Optional[torch.LongTensor] = None, |
|
head_first: bool = True, |
|
chunk_size: int = 64 |
|
): |
|
gi, ge = chunk_rwkv6_fwd_cumsum(g, chunk_size=chunk_size, offsets=offsets, indices=indices, head_first=head_first) |
|
h, _ = chunk_fwd_h( |
|
k=k, |
|
v=v, |
|
g=None, |
|
gk=gi, |
|
gv=None, |
|
h0=initial_state, |
|
output_final_state=False, |
|
offsets=offsets, |
|
head_first=head_first, |
|
chunk_size=chunk_size, |
|
states_in_fp32=True |
|
) |
|
dh, dh0 = chunk_rwkv6_bwd_dh( |
|
q=q, |
|
k=k, |
|
v=v, |
|
gi=gi, |
|
ge=ge, |
|
do=do, |
|
h0=initial_state, |
|
dht=dht, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size, |
|
states_in_fp32=True |
|
) |
|
|
|
|
|
dA = chunk_gla_bwd_dA( |
|
v=v, |
|
do=do, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
dv = chunk_gla_bwd_dv( |
|
k=k, |
|
g=gi, |
|
A=A, |
|
do=do, |
|
dh=dh, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
dq, dk = chunk_rwkv6_bwd_dqk_intra( |
|
q=q, |
|
k=k, |
|
gi=gi, |
|
ge=ge, |
|
dA=dA, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
dq, dk, dg, du = chunk_rwkv6_bwd_dqkgu( |
|
q=q, |
|
k=k, |
|
v=v, |
|
h=h, |
|
g=g, |
|
gi=gi, |
|
ge=ge, |
|
u=u, |
|
do=do, |
|
dh=dh, |
|
dA=dA, |
|
dq=dq, |
|
dk=dk, |
|
scale=scale, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
return dq, dk, dv, dg, du, dh0 |
|
|
|
|
|
class ChunkRWKV6Function(torch.autograd.Function): |
|
|
|
@staticmethod |
|
@input_guard |
|
@autocast_custom_fwd |
|
def forward( |
|
ctx, |
|
q, |
|
k, |
|
v, |
|
g, |
|
u, |
|
scale, |
|
initial_state, |
|
output_final_state, |
|
offsets, |
|
head_first |
|
): |
|
T = q.shape[2] if head_first else q.shape[1] |
|
chunk_size = min(32, max(32, triton.next_power_of_2(T))) if check_shared_mem() \ |
|
else min(64, max(32, triton.next_power_of_2(T))) |
|
|
|
|
|
|
|
|
|
|
|
indices = None |
|
if offsets is not None: |
|
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()]) |
|
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets) |
|
|
|
A, h, ht, o = chunk_rwkv6_fwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
u=u, |
|
scale=scale, |
|
initial_state=initial_state, |
|
output_final_state=output_final_state, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
|
|
ctx.save_for_backward(q, k, v, g, initial_state, A, u) |
|
|
|
ctx.chunk_size = chunk_size |
|
ctx.scale = scale |
|
ctx.offsets = offsets |
|
ctx.indices = indices |
|
ctx.head_first = head_first |
|
return o, ht |
|
|
|
@staticmethod |
|
@input_guard |
|
@autocast_custom_bwd |
|
def backward(ctx, do, dht): |
|
q, k, v, g, initial_state, A, u = ctx.saved_tensors |
|
chunk_size, scale, offsets, indices, head_first = ctx.chunk_size, ctx.scale, ctx.offsets, ctx.indices, ctx.head_first |
|
dq, dk, dv, dg, du, dh0 = chunk_rwkv6_bwd( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
u=u, |
|
scale=scale, |
|
initial_state=initial_state, |
|
A=A, |
|
do=do, |
|
dht=dht, |
|
offsets=offsets, |
|
indices=indices, |
|
head_first=head_first, |
|
chunk_size=chunk_size |
|
) |
|
return dq.to(q), dk.to(k), dv.to(v), dg.to(g), du.to(u), None, dh0, None, None, None |
|
|
|
|
|
@torch.compiler.disable |
|
def chunk_rwkv6( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
g: torch.Tensor, |
|
u: torch.Tensor, |
|
scale: Optional[int] = None, |
|
initial_state: torch.Tensor = None, |
|
output_final_state: bool = False, |
|
cu_seqlens: Optional[torch.LongTensor] = None, |
|
head_first: bool = True |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Args: |
|
q (torch.Tensor): |
|
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. |
|
k (torch.Tensor): |
|
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`. |
|
v (torch.Tensor): |
|
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. |
|
g (torch.Tensor): |
|
Forget gates of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]` applied to keys. |
|
u (torch.Tensor): |
|
bonus representations of shape `[H]`. |
|
scale (Optional[int]): |
|
Scale factor for the attention scores. |
|
If not provided, it will default to `1 / sqrt(K)`. Default: `None`. |
|
initial_state (Optional[torch.Tensor]): |
|
Initial state of shape `[N, H, K, V]` for `N` input sequences. |
|
For equal-length input sequences, `N` equals the batch size `B`. |
|
Default: `None`. |
|
output_final_state (Optional[bool]): |
|
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`. |
|
cu_seqlens (torch.LongTensor): |
|
Cumulative sequence lengths of shape `[N+1]` used for variable-length training, |
|
consistent with the FlashAttention API. |
|
head_first (Optional[bool]): |
|
Whether the inputs are in the head-first format, which is not supported for variable-length inputs. |
|
Default: `True`. |
|
|
|
Returns: |
|
o (torch.Tensor): |
|
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`. |
|
final_state (Optional[torch.Tensor]): |
|
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`. |
|
|
|
Examples:: |
|
>>> import torch |
|
>>> import torch.nn.functional as F |
|
>>> from einops import rearrange |
|
>>> from fla.ops.rwkv6 import chunk_rwkv6 |
|
# inputs with equal lengths |
|
>>> B, T, H, K, V = 4, 2048, 4, 512, 512 |
|
>>> q = torch.randn(B, T, H, K, device='cuda') |
|
>>> k = torch.randn(B, T, H, K, device='cuda') |
|
>>> v = torch.randn(B, T, H, V, device='cuda') |
|
>>> g = F.logsigmoid(torch.randn(B, T, H, K, device='cuda')) |
|
>>> u = torch.randn(H, K, device='cuda') |
|
>>> h0 = torch.randn(B, H, K, V, device='cuda') |
|
>>> o, ht = chunk_rwkv6(q, k, v, g, u, |
|
initial_state=h0, |
|
output_final_state=True, |
|
head_first=False) |
|
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required |
|
>>> q, k, v, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, g)) |
|
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected |
|
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long) |
|
>>> o_var, ht_var = chunk_rwkv6(q, k, v, g, u, |
|
initial_state=h0, |
|
output_final_state=True, |
|
cu_seqlens=cu_seqlens, |
|
head_first=False) |
|
>>> assert o.allclose(o_var.view(o.shape)) |
|
>>> assert ht.allclose(ht_var) |
|
""" |
|
if cu_seqlens is not None: |
|
if q.shape[0] != 1: |
|
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`." |
|
f"Please flatten variable-length inputs before processing.") |
|
if head_first: |
|
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode") |
|
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1: |
|
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, " |
|
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}.") |
|
if scale is None: |
|
scale = q.shape[-1] ** -0.5 |
|
o, final_state = ChunkRWKV6Function.apply( |
|
q, |
|
k, |
|
v, |
|
g, |
|
u, |
|
scale, |
|
initial_state, |
|
output_final_state, |
|
cu_seqlens, |
|
head_first |
|
) |
|
return o, final_state |
|
|