zaydzuhri's picture
Add files using upload-large-folder tool
bfd666f verified
raw
history blame
3.73 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional
import torch
from einops import rearrange, repeat
def naive_nsa(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
indices: torch.LongTensor,
block_size: int = 64,
scale: Optional[float] = None,
head_first: bool = False,
cu_seqlens: Optional[torch.LongTensor] = None
) -> torch.Tensor:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, HQ, T, K]` if `head_first=True` else `[B, T, HQ, K]`.
k (torch.Tensor):
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
GQA is enforced here. The ratio of query heads (HQ) to key/value heads (H) must be a power of 2 and >=16.
v (torch.Tensor):
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
indices (torch.LongTensor):
Block indices of shape `[B, T, H, S]` if `head_first=True` else `[B, T, H, S]`.
`S` is the number of selected blocks for each query token, which is set to 16 in the paper.
block_size (int):
Selected block size. Default: 64.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `False`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
Returns:
o (torch.Tensor):
Outputs of shape `[B, HQ, T, V]` if `head_first=True` else `[B, T, HQ, V]`.
"""
if scale is None:
scale = k.shape[-1] ** -0.5
if cu_seqlens is not None:
if head_first:
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
if head_first:
q, k, v, indices = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v, indices))
dtype = q.dtype
G = q.shape[2] // k.shape[2]
BS = block_size
k, v, indices = (repeat(x, 'b t h d -> b t (h g) d', g=G) for x in (k, v, indices))
q, k, v = map(lambda x: x.float(), (q, k, v))
o = torch.zeros_like(v)
varlen = True
if cu_seqlens is None:
varlen = False
B, T = q.shape[:2]
cu_seqlens = torch.cat([indices.new_tensor(range(0, B*T, T)), indices.new_tensor([B*T])])
for i in range(len(cu_seqlens) - 1):
if not varlen:
q_b, k_b, v_b, i_b = q[i], k[i], v[i], indices[i]
else:
T = cu_seqlens[i+1] - cu_seqlens[i]
q_b, k_b, v_b, i_b = map(lambda x: x[0][cu_seqlens[i]:cu_seqlens[i+1]], (q, k, v, indices))
i_b = i_b.unsqueeze(-1) * BS + i_b.new_tensor(range(BS))
# [T, S*BS, HQ]
i_b = i_b.view(T, indices.shape[2], -1).transpose(1, 2)
for i_q in range(T):
# [HQ, D]
q_i = q_b[i_q] * scale
# [S*BS, HQ]
i_i = i_b[i_q]
# [S*BS, HQ, -1]
k_i, v_i = map(lambda x: x.gather(0, i_i.clamp(0, T-1).unsqueeze(-1).expand(*i_i.shape, x.shape[-1])), (k_b, v_b))
# [S*BS, HQ]
attn = torch.einsum('h d, n h d -> n h', q_i, k_i).masked_fill(i_i > i_q, float('-inf')).softmax(0)
if not varlen:
o[i, i_q] = torch.einsum('n h, n h v -> h v', attn, v_i)
else:
o[0][cu_seqlens[i]+i_q] = torch.einsum('n h, n h v -> h v', attn, v_i)
if head_first:
o = rearrange(o, 'b t h d -> b h t d')
return o.to(dtype)