zaydzuhri's picture
Add files using upload-large-folder tool
bfd666f verified
raw
history blame
16.4 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from fla.ops.utils.op import exp
from fla.utils import check_shared_mem, use_cuda_graph
BK_LIST = [32, 64, 128] if check_shared_mem() else [16, 32]
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=['BV', 'BT'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit(do_not_specialize=['T'])
def chunk_dplr_bwd_kernel_dAu(
v,
do,
v_new,
A_qb,
dA_qk,
dA_qb,
dv_new,
offsets,
indices,
scale: tl.constexpr,
T,
H: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_t, i_bh = tl.program_id(0), tl.program_id(1)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
else:
bos, eos = i_b * T, i_b * T + T
T = eos - bos
b_dA_qk = tl.zeros([BT, BT], dtype=tl.float32)
b_dA_qb = tl.zeros([BT, BT], dtype=tl.float32)
if HEAD_FIRST:
p_A_qb = tl.make_block_ptr(A_qb + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
else:
p_A_qb = tl.make_block_ptr(A_qb + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
b_A_qb = tl.load(p_A_qb, boundary_check=(0, 1))
# causal mask
b_A_qb = tl.where(tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :], b_A_qb, 0.).to(b_A_qb.dtype)
for i_v in range(tl.cdiv(V, BV)):
if HEAD_FIRST:
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
p_v_new = tl.make_block_ptr(v_new + i_bh * T*V, (V, T), (1, V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
p_dv_new = tl.make_block_ptr(dv_new + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_do = tl.make_block_ptr(do + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
p_v_new = tl.make_block_ptr(v_new + (bos*H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t * BT), (BV, BT), (0, 1))
p_dv_new = tl.make_block_ptr(dv_new + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_v_new = tl.load(p_v_new, boundary_check=(0, 1))
b_dA_qk += tl.dot(b_do, b_v)
b_dA_qb += tl.dot(b_do, b_v_new)
b_dv_new = tl.dot(tl.trans(b_A_qb), b_do)
# for recurrent
tl.store(p_dv_new, b_dv_new.to(p_dv_new.dtype.element_ty), boundary_check=(0, 1))
if HEAD_FIRST:
p_dA_qk = tl.make_block_ptr(dA_qk + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
p_dA_qb = tl.make_block_ptr(dA_qb + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
else:
p_dA_qk = tl.make_block_ptr(dA_qk + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
p_dA_qb = tl.make_block_ptr(dA_qb + (bos * H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
m_s = tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :]
b_dA_qk = tl.where(m_s, b_dA_qk * scale, 0.)
tl.store(p_dA_qk, b_dA_qk.to(p_dA_qk.dtype.element_ty), boundary_check=(0, 1))
b_dA_qb = tl.where(m_s, b_dA_qb * scale, 0.)
tl.store(p_dA_qb, b_dA_qb.to(p_dA_qb.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=['BT', 'BK', 'BV'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit
def chunk_dplr_bwd_o_kernel(
v,
v_new,
h,
do,
dh,
dk,
db,
w,
dq,
dv,
dw,
gk,
dgk_last,
k,
b,
offsets,
indices,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
# offset calculation
v += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
v_new += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
do += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
h += (i_bh * NT + i_t) * K*V if HEAD_FIRST else (i_tg * H + i_h) * K * V
dh += (i_bh * NT + i_t) * K*V if HEAD_FIRST else (i_tg * H + i_h) * K * V
dk += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
k += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
db += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
b += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
dw += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
dv += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
dq += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
w += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
# CHECK HEAD_FIRST is FALSE
dgk_last += (i_bh * NT + i_t) * K if HEAD_FIRST else (i_tg * H + i_h) * K
gk += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
stride_qk = K if HEAD_FIRST else H*K
stride_vo = V if HEAD_FIRST else H*V
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_dw = tl.zeros([BT, BK], dtype=tl.float32)
b_db = tl.zeros([BT, BK], dtype=tl.float32)
b_dgk_last = tl.zeros([BK], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
p_v = tl.make_block_ptr(v, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_v_new = tl.make_block_ptr(v_new, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
p_dh = tl.make_block_ptr(dh, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
b_v_new = tl.load(p_v_new, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BV, BK]
b_h = tl.load(p_h, boundary_check=(0, 1))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_dgk_last += tl.sum((b_h * b_dh).to(tl.float32), axis=0)
# [BT, BV] @ [BV, BK] -> [BT, BK]
b_dq += tl.dot(b_do, b_h.to(b_do.dtype))
# [BT, BV] @ [BV, BK] -> [BT, BK]
b_dk += tl.dot(b_v, b_dh.to(b_v.dtype))
b_db += tl.dot(b_v_new, b_dh.to(b_v_new.dtype))
p_dv = tl.make_block_ptr(dv, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_dv = tl.load(p_dv, boundary_check=(0, 1))
b_dw += tl.dot(b_dv.to(b_v.dtype), b_h.to(b_v.dtype))
m_k = (i_k*BK+tl.arange(0, BK)) < K
last_idx = min(i_t * BT + BT, T) - 1
b_gk_last = tl.load(gk + last_idx * stride_qk + i_k*BK + tl.arange(0, BK), mask=m_k, other=float('-inf'))
b_dgk_last *= exp(b_gk_last)
p_k = tl.make_block_ptr(k, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_b = tl.make_block_ptr(b, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_b = tl.load(p_b, boundary_check=(0, 1))
b_dgk_last += tl.sum(b_k * b_dk, axis=0)
b_dgk_last += tl.sum(b_b * b_db, axis=0)
tl.store(dgk_last + tl.arange(0, BK) + i_k * BK, b_dgk_last, mask=m_k)
p_dw = tl.make_block_ptr(dw, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_db = tl.make_block_ptr(db, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dq = tl.make_block_ptr(dq, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dw, b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_db, b_db.to(p_db.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None,
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
for BK in BK_LIST
for BV in BK_LIST
],
key=['BT', 'BK', 'BV'],
use_cuda_graph=use_cuda_graph,
)
@triton.jit
def chunk_dplr_bwd_kernel_dv(
A_qk,
kg,
do,
dv,
dh,
offsets,
indices,
T,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr,
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
# offset calculation
A_qk += i_bh * T * BT if HEAD_FIRST else (bos * H + i_h) * BT
do += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
dv += i_bh * T * V if HEAD_FIRST else (bos * H + i_h) * V
kg += i_bh * T * K if HEAD_FIRST else (bos * H + i_h) * K
dh += (i_bh * NT + i_t) * K*V if HEAD_FIRST else (i_tg * H + i_h) * K*V
stride_qk = K if HEAD_FIRST else H*K
stride_vo = V if HEAD_FIRST else H*V
stride_A = BT if HEAD_FIRST else H*BT
for i_k in range(tl.cdiv(K, BK)):
p_dh = tl.make_block_ptr(dh, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_kg = tl.make_block_ptr(kg, (T, K), (stride_qk, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_kg = tl.load(p_kg, boundary_check=(0, 1))
b_dv += tl.dot(b_kg, b_dh.to(b_kg.dtype))
p_Aqk = tl.make_block_ptr(A_qk, (BT, T), (1, stride_A), (0, i_t * BT), (BT, BT), (0, 1))
b_A = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :], tl.load(p_Aqk, boundary_check=(0, 1)), 0)
p_do = tl.make_block_ptr(do, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv, (T, V), (stride_vo, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dv += tl.dot(b_A.to(b_do.dtype), b_do)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
def chunk_dplr_bwd_dv(
A_qk: torch.Tensor,
kg: torch.Tensor,
do: torch.Tensor,
dh: torch.Tensor,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, K, V = *kg.shape, do.shape[-1]
else:
B, T, H, K, V = *kg.shape, do.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
dv = torch.empty_like(do)
def grid(meta): return (
triton.cdiv(V, meta['BV']),
NT,
B * H
)
chunk_dplr_bwd_kernel_dv[grid](
A_qk=A_qk,
kg=kg,
do=do,
dv=dv,
dh=dh,
offsets=offsets,
indices=indices,
T=T,
H=H,
K=K,
V=V,
BT=BT,
HEAD_FIRST=head_first
)
return dv
def chunk_dplr_bwd_o(
k: torch.Tensor,
b: torch.Tensor,
v: torch.Tensor,
v_new: torch.Tensor,
gk: torch.Tensor,
do: torch.Tensor,
h: torch.Tensor,
dh: torch.Tensor,
dv: torch.Tensor,
w: torch.Tensor,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
chunk_size: int = 64,
scale: float = 1.0,
head_first: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
if head_first:
B, H, T, K, V = *w.shape, v.shape[-1]
else:
B, T, H, K, V = *w.shape, v.shape[-1]
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
BK = min(triton.next_power_of_2(K), 64) if check_shared_mem() else min(triton.next_power_of_2(K), 32)
BV = min(triton.next_power_of_2(V), 64) if check_shared_mem() else min(triton.next_power_of_2(K), 32)
NK = triton.cdiv(K, BK)
dq = torch.empty_like(k)
dk = torch.empty_like(k)
dw = torch.empty_like(w)
db = torch.empty_like(b)
grid = (NK, NT, B * H)
dgk_last = torch.empty(B, H, NT, K, dtype=torch.float, device=w.device) if head_first \
else torch.empty(B, NT, H, K, dtype=torch.float, device=w.device)
chunk_dplr_bwd_o_kernel[grid](
k=k,
b=b,
v=v,
v_new=v_new,
h=h,
do=do,
dh=dh,
dq=dq,
dk=dk,
db=db,
dgk_last=dgk_last,
w=w,
dv=dv,
dw=dw,
gk=gk,
offsets=offsets,
indices=indices,
T=T,
H=H,
K=K,
V=V,
BT=BT,
BK=BK,
BV=BV,
HEAD_FIRST=head_first,
)
return dq, dk, dw, db, dgk_last
def chunk_dplr_bwd_dAu(
v: torch.Tensor,
v_new: torch.Tensor,
do: torch.Tensor,
A_qb: torch.Tensor,
scale: float,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> torch.Tensor:
if head_first:
B, H, T, V = v.shape
else:
B, T, H, V = v.shape
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
if check_shared_mem('ampere'): # A100
BV = min(triton.next_power_of_2(V), 128)
elif check_shared_mem('ada'): # 4090
BV = min(triton.next_power_of_2(V), 64)
else:
BV = min(triton.next_power_of_2(V), 32)
grid = (NT, B * H)
dA_qk = torch.empty(B, H, T, BT, dtype=torch.float, device=v.device) if head_first \
else torch.empty(B, T, H, BT, dtype=torch.float, device=v.device)
dA_qb = torch.empty(B, H, T, BT, dtype=torch.float, device=v.device) if head_first \
else torch.empty(B, T, H, BT, dtype=torch.float, device=v.device)
dv_new = torch.empty_like(v_new)
chunk_dplr_bwd_kernel_dAu[grid](
v=v,
do=do,
v_new=v_new,
A_qb=A_qb,
dA_qk=dA_qk,
dA_qb=dA_qb,
dv_new=dv_new,
offsets=offsets,
indices=indices,
scale=scale,
T=T,
H=H,
V=V,
BT=BT,
BV=BV,
HEAD_FIRST=head_first
)
return dv_new, dA_qk, dA_qb