zaydzuhri's picture
Add files using upload-large-folder tool
bfd666f verified
raw
history blame
24 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional
import torch
import triton
import triton.language as tl
from einops import rearrange, reduce
from fla.ops.common.utils import prepare_chunk_indices
from fla.ops.utils import chunk_global_cumsum, chunk_local_cumsum
from fla.ops.utils.op import div, exp, log
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_shared_mem, input_guard
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
for num_stages in [2, 3, 4, 5]
],
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
)
@triton.jit
def parallel_forgetting_attn_fwd_kernel(
q,
k,
v,
g,
o,
lse,
scale,
offsets,
indices,
T,
B: tl.constexpr,
H: tl.constexpr,
HQ: tl.constexpr,
G: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_hq = i_bh // HQ, i_bh % HQ
i_h = i_hq // G
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
i_n = i_b
bos, eos = i_n * T, i_n * T + T
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
p_g = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
# the Q block is kept in the shared memory throughout the whole kernel
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BT,]
b_gq = tl.load(p_g, boundary_check=(0,)).to(tl.float32)
# [BT, BV]
b_o = tl.zeros([BT, BV], dtype=tl.float32)
b_m = tl.full([BT], float('-inf'), dtype=tl.float32)
b_acc = tl.zeros([BT], dtype=tl.float32)
# [BT]
o_q = i_t * BT + tl.arange(0, BT)
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
# [BS]
o_k = i_s + tl.arange(0, BS)
# [BK, BS]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BS, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BS,]
b_gk = tl.load(p_gk, boundary_check=(0,))
# [BT, BS]
b_s = tl.dot(b_q, b_k) + b_gq[:, None] - b_gk[None, :]
b_s = tl.where(o_q[:, None] >= o_k[None, :], b_s, float('-inf'))
# [BT]
b_m, b_mp = tl.maximum(b_m, tl.max(b_s, 1)), b_m
b_r = exp(b_mp - b_m)
# [BT, BS]
b_p = exp(b_s - b_m[:, None])
# [BT]
b_acc = b_acc * b_r + tl.sum(b_p, 1)
# [BT, BV]
b_o = b_o * b_r[:, None] + tl.dot(b_p.to(b_q.dtype), b_v)
b_mp = b_m
for i_s in range(i_t * BT - BS, -BS, -BS):
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
# [BK, BS]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BS, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BS,]
b_gk = tl.load(p_gk, boundary_check=(0,)).to(tl.float32)
b_gn = tl.load(g + (bos + min(i_s + BS, T) - 1) * HQ + i_hq).to(tl.float32)
b_gp = tl.load(g + (bos + i_s - 1) * HQ + i_hq).to(tl.float32) if i_s % BT > 0 else 0.
# [BT, BS]
b_s = tl.dot(b_q, b_k) + b_gq[:, None] + (b_gn - b_gk)[None, :]
b_gq += b_gn - b_gp
b_m, b_mp = tl.maximum(b_m, tl.max(b_s, 1)), b_m
b_r = exp(b_mp - b_m)
# [BT, BS]
b_p = exp(b_s - b_m[:, None])
# [BT]
b_acc = b_acc * b_r + tl.sum(b_p, 1)
# [BT, BV]
b_o = b_o * b_r[:, None] + tl.dot(b_p.to(b_q.dtype), b_v)
b_mp = b_m
b_o = div(b_o, b_acc[:, None])
b_m += log(b_acc)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_lse, b_m.to(p_lse.dtype.element_ty), boundary_check=(0,))
@triton.jit
def parallel_forgetting_attn_bwd_kernel_preprocess(
o,
do,
delta,
B: tl.constexpr,
V: tl.constexpr
):
i_n = tl.program_id(0)
o_d = tl.arange(0, B)
m_d = o_d < V
b_o = tl.load(o + i_n * V + o_d, mask=m_d, other=0)
b_do = tl.load(do + i_n * V + o_d, mask=m_d, other=0).to(tl.float32)
b_delta = tl.sum(b_o * b_do)
tl.store(delta + i_n, b_delta.to(delta.dtype.element_ty))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4] + ([8] if check_shared_mem('hopper') else [])
for num_stages in [2, 3, 4]
],
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
)
@triton.jit(do_not_specialize=['T'])
def parallel_forgetting_attn_bwd_kernel_dq(
q,
k,
v,
g,
lse,
delta,
do,
dq,
dg,
scale,
offsets,
indices,
T,
B: tl.constexpr,
H: tl.constexpr,
HQ: tl.constexpr,
G: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_hq = i_bh // HQ, i_bh % HQ
i_h = i_hq // G
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
i_n = i_b
bos, eos = i_n * T, i_n * T + T
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
p_g = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
p_dq = tl.make_block_ptr(dq + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
p_dg = tl.make_block_ptr(dg + (bos * HQ + i_hq), (T,), (HQ,), (i_t * BT,), (BT,), (0,))
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BT, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BT]
b_gq = tl.load(p_g, boundary_check=(0,)).to(tl.float32)
b_lse = tl.load(p_lse, boundary_check=(0,))
b_delta = tl.load(p_delta, boundary_check=(0,))
# [BT]
o_q = i_t * BT + tl.arange(0, BT)
# [BT, BK]
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
# [BT]
b_dg = tl.zeros([BT,], dtype=tl.float32)
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_s), (BV, BS), (0, 1))
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
# [BS]
o_k = i_s + tl.arange(0, BS)
# [BK, BS]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BV, BS]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BS,]
b_gk = tl.load(p_gk, boundary_check=(0,))
# [BT, BS]
b_s = tl.dot(b_q, b_k) + (b_gq - b_lse)[:, None] - b_gk[None, :]
b_p = exp(tl.where(o_q[:, None] >= o_k[None, :], b_s, float('-inf')))
# [BT, BV] @ [BV, BS] -> [BT, BS]
b_dp = tl.dot(b_do, b_v)
b_ds = b_p * (b_dp.to(tl.float32) - b_delta[:, None])
# [BT, BS] @ [BS, BK] -> [BT, BK]
b_dq += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_k))
# [BT]
b_dg += tl.sum(b_ds, 1)
for i_s in range(i_t * BT - BS, -BS, -BS):
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (0, i_s), (BK, BS), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (V, T), (1, H*V), (i_v * BV, i_s), (BV, BS), (0, 1))
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
# [BK, BS]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BV, BS]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BS,]
b_gk = tl.load(p_gk, boundary_check=(0,)).to(tl.float32)
b_gn = tl.load(g + (bos + min(i_s + BS, T) - 1) * HQ + i_hq).to(tl.float32)
b_gp = tl.load(g + (bos + i_s - 1) * HQ + i_hq).to(tl.float32) if i_s % BT > 0 else 0.
# [BT, BS]
b_s = tl.dot(b_q, b_k) + (b_gq - b_lse)[:, None] + (b_gn - b_gk)[None, :]
b_p = exp(b_s)
# [BT, BV] @ [BV, BS] -> [BT, BS]
b_dp = tl.dot(b_do, b_v)
b_ds = b_p * (b_dp - b_delta[:, None])
# [BT, BS] @ [BS, BK] -> [BT, BK]
b_dq += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_k))
# [BT]
b_dg += tl.sum(b_ds, 1)
b_gq += b_gn - b_gp
b_dq *= scale
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
@triton.heuristics({
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4, 8]
for num_stages in [2, 3, 4]
],
key=['B', 'H', 'G', 'K', 'V', 'BK', 'BV'],
)
@triton.jit(do_not_specialize=['T'])
def parallel_forgetting_attn_bwd_kernel_dkv(
q,
k,
v,
g,
lse,
delta,
do,
dk,
dv,
dg,
offsets,
indices,
scale,
T,
B: tl.constexpr,
H: tl.constexpr,
HQ: tl.constexpr,
G: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BS: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_OFFSETS: tl.constexpr
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_hq = i_bh // HQ, i_bh % HQ
i_h = i_hq // G
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
else:
i_n = i_b
bos, eos = i_n * T, i_n * T + T
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gk = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_t * BT,), (BT,), (0,))
p_dk = tl.make_block_ptr(dk + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, 0), (BT, BK), (1, 0))
p_dv = tl.make_block_ptr(dv + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dg = tl.make_block_ptr(dg + (bos * HQ + i_hq), (T,), (HQ,), (i_t * BT,), (BT,), (0,))
# [BT, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
# [BT]
b_gk = tl.load(p_gk, boundary_check=(0,)).to(tl.float32)
b_dg = tl.zeros([BT,], dtype=tl.float32)
o_k = i_t * BT + tl.arange(0, BT)
m_k = o_k < T
for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS):
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_s, 0), (BS, BK), (1, 0))
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
p_gq = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
# [BS]
o_q = i_s + tl.arange(0, BS)
# [BS, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BS, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BS]
b_lse = tl.load(p_lse, boundary_check=(0,))
b_delta = tl.load(p_delta, boundary_check=(0,))
b_gq = tl.load(p_gq, boundary_check=(0,)).to(tl.float32)
m_q = o_q < T
m_s = (o_k[:, None] <= o_q[None, :]) & m_k[:, None] & m_q[None, :]
# [BT, BS]
b_s = tl.dot(b_k, tl.trans(b_q)) - b_gk[:, None] + (b_gq - b_lse)[None, :]
b_p = tl.where(m_s, exp(b_s), 0)
# [BT, BS] @ [BS, BV] -> [BT, BV]
b_dv += tl.dot(b_p.to(b_do.dtype), b_do)
# [BT, BV] @ [BV, BS] -> [BT, BS]
b_dp = tl.dot(b_v, tl.trans(b_do))
# [BT, BS]
b_ds = b_p * (b_dp - b_delta[None, :])
# [BT, BS] @ [BS, BK] -> [BT, BK]
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
# [BT]
b_dg -= tl.sum(b_ds, 1)
b_gk -= tl.load(g + (bos + min((i_t + 1) * BT, T) - 1) * HQ + i_hq).to(tl.float32)
for i_s in range((i_t + 1) * BT, T, BS):
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_s, 0), (BS, BK), (1, 0))
p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_s, i_v * BV), (BS, BV), (1, 0))
p_lse = tl.make_block_ptr(lse + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
p_delta = tl.make_block_ptr(delta + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
p_gq = tl.make_block_ptr(g + bos * HQ + i_hq, (T,), (HQ,), (i_s,), (BS,), (0,))
# [BS]
o_q = i_s + tl.arange(0, BS)
# [BS, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BS, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BS]
b_lse = tl.load(p_lse, boundary_check=(0,))
b_delta = tl.load(p_delta, boundary_check=(0,))
b_gq = tl.load(p_gq, boundary_check=(0,)).to(tl.float32)
b_gn = tl.load(g + (bos + min(i_s + BS, T) - 1) * HQ + i_hq).to(tl.float32)
b_gp = tl.load(g + (bos + i_s - 1) * HQ + i_hq).to(tl.float32) if i_s % BT > 0 else 0.
# [BT, BS]
b_s = tl.dot(b_k, tl.trans(b_q)) - (b_gk + b_gp)[:, None] + (b_gq - b_lse)[None, :]
b_p = exp(b_s)
# [BT, BS] @ [BS, BV] -> [BT, BV]
b_dv += tl.dot(b_p.to(b_do.dtype), b_do)
# [BT, BV] @ [BV, BS] -> [BT, BS]
b_dp = tl.dot(b_v, tl.trans(b_do))
# [BT, BS]
b_ds = b_p * (b_dp - b_delta[None, :])
# [BT, BS] @ [BS, BK] -> [BT, BK]
b_dk += tl.dot(b_ds.to(b_q.dtype), b_q)
# [BT]
b_dg -= tl.sum(b_ds, 1)
b_gk -= b_gn - b_gp
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
def parallel_forgetting_attn_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
scale: float,
chunk_size: int = 128,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
):
B, T, H, K, V = *k.shape, v.shape[-1]
HQ = q.shape[2]
G = HQ // H
BT = chunk_size
BK = max(16, triton.next_power_of_2(K))
assert V <= 256, "V must be less than or equal to 256"
if check_shared_mem('hopper'):
BS = min(64, max(16, triton.next_power_of_2(T)))
else:
BS = min(32, max(16, triton.next_power_of_2(T)))
BV = min(256, max(16, triton.next_power_of_2(V)))
NV = triton.cdiv(V, BV)
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
o = torch.empty(B, T, HQ, V, dtype=v.dtype, device=q.device)
lse = torch.empty(B, T, HQ, dtype=torch.float, device=q.device)
grid = (NV, NT, B * HQ)
parallel_forgetting_attn_fwd_kernel[grid](
q=q,
k=k,
v=v,
g=g,
o=o,
lse=lse,
scale=scale,
offsets=offsets,
indices=indices,
B=B,
T=T,
H=H,
HQ=HQ,
G=G,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV,
)
return o, lse
def parallel_forgetting_attn_bwd_preprocess(
o: torch.Tensor,
do: torch.Tensor
):
V = o.shape[-1]
delta = torch.empty_like(o[..., 0], dtype=torch.float)
parallel_forgetting_attn_bwd_kernel_preprocess[(delta.numel(),)](
o=o,
do=do,
delta=delta,
B=triton.next_power_of_2(V),
V=V,
)
return delta
def parallel_forgetting_attn_bwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
o: torch.Tensor,
lse: torch.Tensor,
do: torch.Tensor,
scale: float = None,
chunk_size: int = 128,
offsets: Optional[torch.LongTensor] = None,
indices: Optional[torch.LongTensor] = None,
):
B, T, H, K, V = *k.shape, v.shape[-1]
HQ = q.shape[2]
G = HQ // H
BT = chunk_size
BS = min(32, max(16, triton.next_power_of_2(T)))
BK = max(16, triton.next_power_of_2(K))
BV = max(16, triton.next_power_of_2(V))
NV = triton.cdiv(V, BV)
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
delta = parallel_forgetting_attn_bwd_preprocess(o, do)
dq = q.new_empty(B, T, HQ, K, dtype=q.dtype)
dk = q.new_empty(B, T, HQ, K, dtype=k.dtype if H == HQ else torch.float)
dv = q.new_empty(B, T, HQ, V, dtype=v.dtype if H == HQ else torch.float)
dg = q.new_empty(g.shape, dtype=torch.float)
# NOTE: the original `dg` can be destroyed during autotuning
# this is [a known triton issue](https://github.com/triton-lang/triton/issues/5082), which will be fixed in 3.3 (?)
# so we need to make a copy of `dg`
dg2 = q.new_empty(g.shape, dtype=torch.float)
grid = (NV, NT, B * HQ)
parallel_forgetting_attn_bwd_kernel_dq[grid](
q=q,
k=k,
v=v,
g=g,
lse=lse,
delta=delta,
do=do,
dq=dq,
dg=dg,
offsets=offsets,
indices=indices,
scale=scale,
T=T,
B=B,
H=H,
HQ=HQ,
G=G,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV
)
parallel_forgetting_attn_bwd_kernel_dkv[grid](
q=q,
k=k,
v=v,
g=g,
lse=lse,
delta=delta,
do=do,
dk=dk,
dv=dv,
dg=dg2,
offsets=offsets,
indices=indices,
scale=scale,
T=T,
B=B,
H=H,
HQ=HQ,
G=G,
K=K,
V=V,
BT=BT,
BS=BS,
BK=BK,
BV=BV
)
dk = reduce(dk, 'b t (h g) k -> b t h k', g=G, reduction='sum')
dv = reduce(dv, 'b t (h g) v -> b t h v', g=G, reduction='sum')
dg = dg.add_(dg2)
return dq, dk, dv, dg
@torch.compile
class ParallelForgettingAttentionFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(ctx, q, k, v, g, scale, offsets):
ctx.dtype = q.dtype
if check_shared_mem('hopper'):
chunk_size = min(128, max(16, triton.next_power_of_2(q.shape[1])))
else:
chunk_size = min(64, max(16, triton.next_power_of_2(q.shape[1])))
# 2-d indices denoting the offsets of chunks in each sequence
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
indices = prepare_chunk_indices(offsets, chunk_size) if offsets is not None else None
g = chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=False)
o, lse = parallel_forgetting_attn_fwd(
q=q,
k=k,
v=v,
g=g,
scale=scale,
chunk_size=chunk_size,
offsets=offsets,
indices=indices
)
ctx.save_for_backward(q, k, v, g, o, lse)
ctx.chunk_size = chunk_size
ctx.offsets = offsets
ctx.indices = indices
ctx.scale = scale
return o.to(q.dtype)
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(ctx, do):
q, k, v, g, o, lse = ctx.saved_tensors
dq, dk, dv, dg = parallel_forgetting_attn_bwd(
q=q,
k=k,
v=v,
g=g,
o=o,
lse=lse,
do=do,
scale=ctx.scale,
chunk_size=ctx.chunk_size,
offsets=ctx.offsets,
indices=ctx.indices
)
dg = chunk_global_cumsum(dg, reverse=True, head_first=False, offsets=ctx.offsets)
return dq.to(q), dk.to(k), dv.to(v), dg.to(g), None, None, None, None, None, None, None, None
def parallel_forgetting_attn(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
scale: Optional[float] = None,
cu_seqlens: Optional[torch.LongTensor] = None,
head_first: bool = False
) -> torch.Tensor:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, T, HQ, K]` if `head_first=False` else `[B, HQ, T, K]`.
k (torch.Tensor):
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
GQA will be applied if HQ is divisible by H.
v (torch.Tensor):
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
g (torch.Tensor):
Forget gates (in **log space**) of shape `[B, T, HQ]` if `head_first=False` else `[B, HQ, T]`.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
cu_seqlens (torch.LongTensor):
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
consistent with the FlashAttention API.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `False`.
Returns:
o (torch.Tensor):
Outputs of shape `[B, T, HQ, V]` if `head_first=False` else `[B, HQ, T, V]`.
"""
if scale is None:
scale = k.shape[-1] ** -0.5
if cu_seqlens is not None:
assert q.shape[0] == 1, "batch size must be 1 when cu_seqlens are provided"
if g is not None:
g = g.float()
if head_first:
q, k, v = map(lambda x: rearrange(x, 'b h t d -> b t h d'), (q, k, v))
g = rearrange(g, 'b h t -> b t h')
o = ParallelForgettingAttentionFunction.apply(q, k, v, g, scale, cu_seqlens)
if head_first:
o = rearrange(o, 'b t h d -> b h t d')
return o