|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch MAMBA model.""" |
|
|
|
import math |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers.activations import ACT2FN |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
from transformers.utils.deprecation import deprecate_kwarg |
|
|
|
from fla.models.mamba.configuration_mamba import MambaConfig |
|
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
with warnings.catch_warnings(): |
|
warnings.simplefilter('ignore') |
|
try: |
|
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
except ImportError: |
|
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None |
|
|
|
try: |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
except ImportError: |
|
causal_conv1d_update, causal_conv1d_fn = None, None |
|
is_fast_path_available = all(( |
|
selective_state_update, |
|
selective_scan_fn, |
|
causal_conv1d_fn, |
|
causal_conv1d_update, |
|
mamba_inner_fn |
|
)) |
|
|
|
|
|
class MambaCache: |
|
""" |
|
Cache for mamba model which does not have attention mechanism and key value states. |
|
|
|
Arguments: |
|
config (`PretrainedConfig): |
|
The configuration file defining the shape-related attributes required to initialize the static cache. |
|
batch_size (`int`): |
|
The batch size with which the model will be used. Note that a new instance must be instantiated if a |
|
smaller batch size is used. |
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float16`): |
|
The default `dtype` to use when initializing the layer. |
|
device (`torch.device` or `str`, *optional*): |
|
The device on which the cache should be initialized. Should be the same as the layer. |
|
|
|
Attributes: |
|
dtype: (`torch.dtype`): |
|
The default `dtype` used to initializing the cache. |
|
intermediate_size: (`int`): |
|
Model's intermediate_size taken from config. |
|
ssm_state_size: (`int`): |
|
Model's state_size taken from config. |
|
conv_kernel_size: (`int`): |
|
Model's convolution kernel size taken from config |
|
conv_states: (`torch.Tensor`): |
|
A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states. |
|
ssm_states: (`torch.Tensor`): |
|
A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache |
|
|
|
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf") |
|
|
|
>>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt") |
|
|
|
>>> # Prepare a cache class and pass it to model's forward |
|
>>> past_key_values = MambaCache(config=model.config, batch_size=1, device=model.device, dtype=model.dtype) |
|
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True) |
|
>>> outputs.past_key_values |
|
MambaCache() |
|
``` |
|
""" |
|
|
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
batch_size: int = None, |
|
dtype: torch.dtype = torch.float16, |
|
device: Optional[Union[torch.device, str]] = None, |
|
max_batch_size: Optional[int] = None, |
|
): |
|
if max_batch_size is not None: |
|
logger.warning_once( |
|
f"The 'max_batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in " |
|
"v4.46. Use the more precisely named 'batch_size' argument instead." |
|
) |
|
self.dtype = dtype |
|
self.batch_size = batch_size or max_batch_size |
|
self.intermediate_size = config.intermediate_size |
|
self.ssm_state_size = config.state_size |
|
self.conv_kernel_size = config.conv_kernel |
|
|
|
self.conv_states: torch.Tensor = torch.zeros( |
|
config.num_hidden_layers, |
|
self.batch_size, |
|
self.intermediate_size, |
|
self.conv_kernel_size, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
self.ssm_states: torch.Tensor = torch.zeros( |
|
config.num_hidden_layers, |
|
self.batch_size, |
|
self.intermediate_size, |
|
self.ssm_state_size, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
torch._dynamo.mark_static_address(self.conv_states) |
|
torch._dynamo.mark_static_address(self.ssm_states) |
|
|
|
def update_conv_state( |
|
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor |
|
) -> torch.Tensor: |
|
conv_state = self.conv_states[layer_idx] |
|
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1) |
|
|
|
conv_state = conv_state.roll(shifts=-1, dims=-1) |
|
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device) |
|
self.conv_states[layer_idx].zero_() |
|
self.conv_states[layer_idx] += conv_state |
|
return self.conv_states[layer_idx] |
|
|
|
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor): |
|
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device) |
|
return self.ssm_states[layer_idx] |
|
|
|
def reset(self): |
|
self.conv_states.zero_() |
|
self.ssm_states.zero_() |
|
|
|
|
|
class MambaMixer(nn.Module): |
|
""" |
|
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. |
|
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) |
|
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, |
|
and is why Mamba is called **selective** state spaces) |
|
""" |
|
|
|
def __init__(self, config: MambaConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.ssm_state_size = config.state_size |
|
self.conv_kernel_size = config.conv_kernel |
|
self.intermediate_size = config.intermediate_size |
|
self.time_step_rank = int(config.time_step_rank) |
|
self.layer_idx = layer_idx |
|
self.use_conv_bias = config.use_conv_bias |
|
self.conv1d = nn.Conv1d( |
|
in_channels=self.intermediate_size, |
|
out_channels=self.intermediate_size, |
|
bias=config.use_conv_bias, |
|
kernel_size=config.conv_kernel, |
|
groups=self.intermediate_size, |
|
padding=config.conv_kernel - 1, |
|
) |
|
|
|
self.activation = config.hidden_act |
|
self.act = ACT2FN[config.hidden_act] |
|
|
|
|
|
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias) |
|
|
|
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) |
|
|
|
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) |
|
|
|
|
|
|
|
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] |
|
A = A.expand(self.intermediate_size, -1).contiguous() |
|
|
|
self.A_log = nn.Parameter(torch.log(A)) |
|
self.D = nn.Parameter(torch.ones(self.intermediate_size)) |
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) |
|
self.use_bias = config.use_bias |
|
|
|
if not is_fast_path_available: |
|
logger.warning_once( |
|
"The fast path is not available because on of " |
|
"`(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" |
|
" is None. Falling back to the naive implementation. " |
|
"To install follow https://github.com/state-spaces/mamba/#installation and" |
|
" https://github.com/Dao-AILab/causal-conv1d" |
|
) |
|
|
|
def cuda_kernels_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cache_params: Optional[MambaCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
): |
|
|
|
projected_states = self.in_proj(hidden_states).transpose(1, 2) |
|
|
|
if self.training and cache_params is None: |
|
contextualized_states = mamba_inner_fn( |
|
projected_states, |
|
self.conv1d.weight, |
|
self.conv1d.bias if self.use_conv_bias else None, |
|
self.x_proj.weight, |
|
self.dt_proj.weight, |
|
self.out_proj.weight, |
|
self.out_proj.bias.float() if self.use_bias else None, |
|
-torch.exp(self.A_log.float()), |
|
None, |
|
None, |
|
self.D.float(), |
|
delta_bias=self.dt_proj.bias.float(), |
|
delta_softplus=True, |
|
) |
|
|
|
else: |
|
hidden_states, gate = projected_states.chunk(2, dim=1) |
|
|
|
if attention_mask is not None: |
|
hidden_states = hidden_states * attention_mask.unsqueeze(1) |
|
|
|
|
|
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) |
|
if cache_params is not None and cache_position[0] > 0: |
|
hidden_states = causal_conv1d_update( |
|
hidden_states.squeeze(-1), |
|
cache_params.conv_states[self.layer_idx], |
|
conv_weights, |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
hidden_states = hidden_states.unsqueeze(-1) |
|
else: |
|
if cache_params is not None: |
|
conv_states = nn.functional.pad( |
|
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) |
|
) |
|
cache_params.update_conv_state(self.layer_idx, conv_states, cache_position) |
|
hidden_states = causal_conv1d_fn( |
|
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation |
|
) |
|
|
|
if attention_mask is not None: |
|
hidden_states = hidden_states * attention_mask.unsqueeze(1) |
|
|
|
|
|
|
|
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) |
|
time_step, B, C = torch.split( |
|
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 |
|
) |
|
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2) |
|
|
|
A = -torch.exp(self.A_log.float()) |
|
|
|
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None |
|
if cache_params is not None and cache_position[0] > 0: |
|
scan_outputs = selective_state_update( |
|
cache_params.ssm_states[self.layer_idx], |
|
hidden_states[..., 0], |
|
discrete_time_step[..., 0], |
|
A, |
|
B[:, 0], |
|
C[:, 0], |
|
self.D, |
|
gate[..., 0], |
|
time_proj_bias, |
|
dt_softplus=True, |
|
).unsqueeze(-1) |
|
else: |
|
scan_outputs, ssm_state = selective_scan_fn( |
|
hidden_states, |
|
discrete_time_step, |
|
A, |
|
B.transpose(1, 2), |
|
C.transpose(1, 2), |
|
self.D.float(), |
|
gate, |
|
time_proj_bias, |
|
delta_softplus=True, |
|
return_last_state=True, |
|
) |
|
if ssm_state is not None and cache_params is not None: |
|
cache_params.update_ssm_state(self.layer_idx, ssm_state) |
|
|
|
|
|
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) |
|
return contextualized_states |
|
|
|
def slow_forward( |
|
self, |
|
input_states, |
|
cache_params: Optional[MambaCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None |
|
): |
|
batch_size, seq_len, _ = input_states.shape |
|
dtype = input_states.dtype |
|
|
|
|
|
projected_states = self.in_proj(input_states).transpose(1, 2) |
|
hidden_states, gate = projected_states.chunk(2, dim=1) |
|
|
|
if attention_mask is not None: |
|
hidden_states = hidden_states * attention_mask.unsqueeze(1) |
|
|
|
|
|
if cache_params is not None: |
|
ssm_state = cache_params.ssm_states[self.layer_idx].clone() |
|
ssm_state = ssm_state.to(hidden_states.device) |
|
|
|
|
|
|
|
if cache_position.shape[0] == self.conv_kernel_size: |
|
conv_state = nn.functional.pad( |
|
hidden_states, |
|
(self.conv_kernel_size - hidden_states.shape[-1], 0) |
|
) |
|
|
|
cache_params.update_conv_state(self.layer_idx, conv_state, cache_position) |
|
|
|
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) |
|
else: |
|
conv_state = cache_params.update_conv_state(self.layer_idx, hidden_states, cache_position) |
|
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) |
|
if self.use_conv_bias: |
|
hidden_states += self.conv1d.bias |
|
|
|
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) |
|
else: |
|
ssm_state = torch.zeros( |
|
(batch_size, self.intermediate_size, self.ssm_state_size), |
|
device=hidden_states.device, dtype=dtype |
|
) |
|
|
|
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) |
|
|
|
if attention_mask is not None: |
|
hidden_states = hidden_states * attention_mask.unsqueeze(1) |
|
|
|
|
|
|
|
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) |
|
time_step, B, C = torch.split( |
|
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 |
|
) |
|
|
|
discrete_time_step = self.dt_proj(time_step) |
|
|
|
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) |
|
|
|
|
|
|
|
A = -torch.exp(self.A_log.float()) |
|
|
|
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) |
|
|
|
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() |
|
deltaB_u = discrete_B * hidden_states[:, :, :, None].float() |
|
|
|
|
|
scan_outputs = [] |
|
for i in range(seq_len): |
|
|
|
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] |
|
|
|
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) |
|
scan_outputs.append(scan_output[:, :, 0]) |
|
|
|
scan_output = torch.stack(scan_outputs, dim=-1) |
|
scan_output = scan_output + (hidden_states * self.D[None, :, None]) |
|
scan_output = (scan_output * self.act(gate)) |
|
|
|
if cache_params is not None: |
|
cache_params.ssm_states[self.layer_idx].copy_(ssm_state) |
|
|
|
|
|
|
|
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) |
|
return contextualized_states |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
cache_params: Optional[MambaCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
): |
|
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type: |
|
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) |
|
return self.slow_forward(hidden_states, cache_params, cache_position, attention_mask) |
|
|
|
|
|
class MambaBlock(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.residual_in_fp32 = config.residual_in_fp32 |
|
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
self.mixer = MambaMixer(config, layer_idx=layer_idx) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
cache_params: Optional[MambaCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
): |
|
residual = hidden_states |
|
hidden_states = self.norm(hidden_states) |
|
if self.residual_in_fp32: |
|
residual = residual.to(torch.float32) |
|
|
|
hidden_states = self.mixer( |
|
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask |
|
) |
|
hidden_states = residual + hidden_states |
|
if self.residual_in_fp32: |
|
hidden_states = hidden_states.to(dtype=self.norm.weight.dtype) |
|
return hidden_states |
|
|
|
|
|
class MambaPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = MambaConfig |
|
base_model_prefix = "backbone" |
|
_no_split_modules = ["MambaBlock", "MambaMixer"] |
|
supports_gradient_checkpointing = True |
|
_is_stateful = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
if not getattr(module.bias, "_no_reinit", False): |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, MambaMixer): |
|
module.A_log._no_weight_decay = True |
|
module.D._no_weight_decay = True |
|
|
|
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale |
|
if self.config.time_step_init_scheme == "constant": |
|
nn.init.constant_(module.dt_proj.weight, dt_init_std) |
|
elif self.config.time_step_init_scheme == "random": |
|
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std) |
|
|
|
dt = torch.exp( |
|
torch.rand(self.config.intermediate_size) |
|
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) |
|
+ math.log(self.config.time_step_min) |
|
).clamp(min=self.config.time_step_floor) |
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
with torch.no_grad(): |
|
module.dt_proj.bias.data = nn.Parameter(inv_dt.to(module.dt_proj.bias.device)) |
|
module.dt_proj.bias._no_reinit = True |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, std=self.config.initializer_range) |
|
elif hasattr(module, 'reset_parameters'): |
|
module.reset_parameters() |
|
|
|
if self.config.rescale_prenorm_residual: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, p in module.named_parameters(): |
|
if name in ["out_proj.weight"]: |
|
|
|
|
|
|
|
|
|
nn.init.kaiming_uniform_(p, a=math.sqrt(5)) |
|
with torch.no_grad(): |
|
p /= math.sqrt(self.config.num_hidden_layers) |
|
|
|
|
|
@dataclass |
|
class MambaOutput(ModelOutput): |
|
""" |
|
Class for the MAMBA model outputs. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
cache_params (`MambaCache`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
|
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, |
|
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
cache_params: Optional[MambaCache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class MambaCausalLMOutput(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
cache_params (`MambaCache`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
|
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, |
|
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
cache_params: Optional[MambaCache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class MambaModel(MambaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self._register_load_state_dict_pre_hook(self.load_hook) |
|
self.post_init() |
|
|
|
def load_hook(self, state_dict, prefix, *args): |
|
for k in state_dict: |
|
if "embedding." in k: |
|
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) |
|
break |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embeddings = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
cache_params: Optional[MambaCache] = None, |
|
use_cache: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, MambaOutput]: |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embeddings(input_ids) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
use_cache = False |
|
|
|
if use_cache: |
|
if cache_params is None: |
|
cache_params = MambaCache( |
|
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype |
|
) |
|
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device) |
|
elif cache_position is None: |
|
|
|
|
|
|
|
raise ValueError( |
|
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, " |
|
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will " |
|
"be initialized for you automatically" |
|
) |
|
else: |
|
cache_params = None |
|
|
|
hidden_states = inputs_embeds |
|
all_hidden_states = () if output_hidden_states else None |
|
for mixer_block in self.layers: |
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask |
|
) |
|
else: |
|
hidden_states = mixer_block( |
|
hidden_states, |
|
cache_params=cache_params, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
hidden_states = self.norm_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) |
|
|
|
return MambaOutput( |
|
last_hidden_state=hidden_states, |
|
cache_params=cache_params if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
) |
|
|
|
|
|
class MambaForCausalLM(MambaPreTrainedModel, GenerationMixin): |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backbone = MambaModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.criterion = None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_input_embeddings(self): |
|
return self.backbone.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
return self.backbone.set_input_embeddings(new_embeddings) |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
num_new_tokens: int = 1, |
|
**kwargs |
|
) -> Dict[str, Any]: |
|
model_kwargs["cache_params"] = outputs.get("cache_params", None) |
|
if ( |
|
model_kwargs.get("use_cache", True) |
|
and "cache_position" in model_kwargs |
|
and model_kwargs["cache_position"] is not None |
|
): |
|
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens |
|
|
|
if "attention_mask" in model_kwargs: |
|
attention_mask = model_kwargs["attention_mask"] |
|
model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
|
|
return model_kwargs |
|
|
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") |
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
inputs_embeds=None, |
|
use_cache=None, |
|
cache_params: Optional[MambaCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Optional[int] = None, |
|
**kwargs, |
|
): |
|
if use_cache: |
|
|
|
if cache_position is None: |
|
raise ValueError( |
|
"`cache_position` should not be None as it should have been initialized in " |
|
"`model.generate`, you are responsible for passing in a valid `cache_position` if " |
|
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" |
|
) |
|
if cache_position[0] > 0: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
if attention_mask is not None: |
|
attention_mask = None |
|
|
|
else: |
|
|
|
|
|
|
|
|
|
cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device) |
|
|
|
if inputs_embeds is not None and cache_params is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
if logits_to_keep is not None: |
|
model_inputs['logits_to_keep'] = logits_to_keep |
|
|
|
model_inputs.update({ |
|
'cache_params': cache_params, |
|
'use_cache': use_cache, |
|
'cache_position': cache_position, |
|
'attention_mask': attention_mask, |
|
'logits_to_keep': logits_to_keep, |
|
}) |
|
return model_inputs |
|
|
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
cache_params: Optional[MambaCache] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.Tensor] = None, |
|
logits_to_keep: Optional[int] = 0, |
|
**kwargs, |
|
) -> Union[Tuple, MambaCausalLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
mamba_outputs = self.backbone( |
|
input_ids, |
|
cache_params=cache_params, |
|
inputs_embeds=inputs_embeds, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
hidden_states = mamba_outputs[0] |
|
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training |
|
|
|
loss, logits = None, None |
|
if not fuse_linear_and_cross_entropy or labels is None: |
|
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:]) |
|
if labels is not None: |
|
if getattr(self, 'criterion', None) is None: |
|
if fuse_linear_and_cross_entropy: |
|
criterion = FusedLinearCrossEntropyLoss() |
|
elif self.config.fuse_cross_entropy: |
|
criterion = FusedCrossEntropyLoss(inplace_backward=True) |
|
else: |
|
criterion = nn.CrossEntropyLoss() |
|
else: |
|
criterion = self.criterion |
|
|
|
labels = labels.to(hidden_states.device) |
|
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1) |
|
if fuse_linear_and_cross_entropy: |
|
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias) |
|
else: |
|
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + mamba_outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return MambaCausalLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
cache_params=mamba_outputs.cache_params, |
|
hidden_states=mamba_outputs.hidden_states, |
|
) |
|
|