Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fla/models/abc/__init__.py +13 -0
- fla/models/abc/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/abc/__pycache__/configuration_abc.cpython-311.pyc +0 -0
- fla/models/abc/__pycache__/modeling_abc.cpython-311.pyc +0 -0
- fla/models/abc/configuration_abc.py +91 -0
- fla/models/abc/modeling_abc.py +418 -0
- fla/models/bitnet/__init__.py +13 -0
- fla/models/bitnet/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/bitnet/__pycache__/configuration_bitnet.cpython-311.pyc +0 -0
- fla/models/bitnet/__pycache__/modeling_bitnet.cpython-311.pyc +0 -0
- fla/models/bitnet/configuration_bitnet.py +67 -0
- fla/models/bitnet/modeling_bitnet.py +441 -0
- fla/models/forgetting_transformer/__init__.py +16 -0
- fla/models/forgetting_transformer/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/forgetting_transformer/__pycache__/configuration_forgetting_transformer.cpython-311.pyc +0 -0
- fla/models/forgetting_transformer/__pycache__/modeling_forgetting_transformer.cpython-311.pyc +0 -0
- fla/models/forgetting_transformer/configuration_forgetting_transformer.py +68 -0
- fla/models/forgetting_transformer/modeling_forgetting_transformer.py +408 -0
- fla/models/gated_deltanet/__init__.py +12 -0
- fla/models/gated_deltanet/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/gated_deltanet/__pycache__/configuration_gated_deltanet.cpython-311.pyc +0 -0
- fla/models/gated_deltanet/__pycache__/modeling_gated_deltanet.cpython-311.pyc +0 -0
- fla/models/gated_deltanet/configuration_gated_deltanet.py +83 -0
- fla/models/gated_deltanet/modeling_gated_deltanet.py +412 -0
- fla/models/gla/__init__.py +13 -0
- fla/models/gla/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/gla/__pycache__/configuration_gla.cpython-311.pyc +0 -0
- fla/models/gla/__pycache__/modeling_gla.cpython-311.pyc +0 -0
- fla/models/gla/modeling_gla.py +417 -0
- fla/models/lightnet/__init__.py +13 -0
- fla/models/lightnet/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/lightnet/__pycache__/configuration_lightnet.cpython-311.pyc +0 -0
- fla/models/lightnet/__pycache__/modeling_lightnet.cpython-311.pyc +0 -0
- fla/models/lightnet/configuration_lightnet.py +83 -0
- fla/models/lightnet/modeling_lightnet.py +410 -0
- fla/models/linear_attn/__init__.py +12 -0
- fla/models/linear_attn/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/linear_attn/__pycache__/configuration_linear_attn.cpython-311.pyc +0 -0
- fla/models/linear_attn/__pycache__/modeling_linear_attn.cpython-311.pyc +0 -0
- fla/models/linear_attn/configuration_linear_attn.py +91 -0
- fla/models/linear_attn/modeling_linear_attn.py +406 -0
- fla/models/mamba/__init__.py +13 -0
- fla/models/mamba/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/mamba/configuration_mamba.py +166 -0
- fla/models/mamba/modeling_mamba.py +843 -0
- fla/models/mamba2/__init__.py +13 -0
- fla/models/mamba2/__pycache__/__init__.cpython-311.pyc +0 -0
- fla/models/mamba2/__pycache__/configuration_mamba2.cpython-311.pyc +0 -0
- fla/models/mamba2/__pycache__/modeling_mamba2.cpython-311.pyc +0 -0
- fla/models/mamba2/configuration_mamba2.py +170 -0
fla/models/abc/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.abc.configuration_abc import ABCConfig
|
6 |
+
from fla.models.abc.modeling_abc import ABCForCausalLM, ABCModel
|
7 |
+
|
8 |
+
AutoConfig.register(ABCConfig.model_type, ABCConfig)
|
9 |
+
AutoModel.register(ABCConfig, ABCModel)
|
10 |
+
AutoModelForCausalLM.register(ABCConfig, ABCForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['ABCConfig', 'ABCForCausalLM', 'ABCModel']
|
fla/models/abc/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (716 Bytes). View file
|
|
fla/models/abc/__pycache__/configuration_abc.cpython-311.pyc
ADDED
Binary file (4.02 kB). View file
|
|
fla/models/abc/__pycache__/modeling_abc.cpython-311.pyc
ADDED
Binary file (19.2 kB). View file
|
|
fla/models/abc/configuration_abc.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class ABCConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'abc'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
gate_low_rank_dim: int = 16,
|
17 |
+
clamp_min: float = -32,
|
18 |
+
clamp_max: float = 32,
|
19 |
+
hidden_ratio: Optional[int] = 4,
|
20 |
+
intermediate_size: Optional[int] = None,
|
21 |
+
num_hidden_layers: int = 24,
|
22 |
+
num_heads: int = 4,
|
23 |
+
num_slots: Optional[int] = 64,
|
24 |
+
use_short_conv: bool = False,
|
25 |
+
conv_size: int = 4,
|
26 |
+
exapnd_k: float = 0.5,
|
27 |
+
exapnd_v: float = 1,
|
28 |
+
hidden_act: str = "swish",
|
29 |
+
max_position_embeddings: int = 2048,
|
30 |
+
elementwise_affine: Optional[bool] = True,
|
31 |
+
norm_eps: float = 1e-6,
|
32 |
+
use_rope: bool = True,
|
33 |
+
attn: Optional[Dict] = None,
|
34 |
+
use_cache: bool = True,
|
35 |
+
pad_token_id: int = None,
|
36 |
+
bos_token_id: int = 1,
|
37 |
+
eos_token_id: int = 2,
|
38 |
+
tie_word_embeddings: bool = False,
|
39 |
+
initializer_range: float = 0.006,
|
40 |
+
fuse_norm: bool = True,
|
41 |
+
fuse_swiglu: bool = True,
|
42 |
+
fuse_cross_entropy: bool = True,
|
43 |
+
vocab_size: int = 32000,
|
44 |
+
**kwargs
|
45 |
+
):
|
46 |
+
self.hidden_size = hidden_size
|
47 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
48 |
+
self.clamp_min = clamp_min
|
49 |
+
self.clamp_max = clamp_max
|
50 |
+
self.hidden_ratio = hidden_ratio
|
51 |
+
self.intermediate_size = intermediate_size
|
52 |
+
self.num_hidden_layers = num_hidden_layers
|
53 |
+
self.num_heads = num_heads
|
54 |
+
self.num_slots = num_slots
|
55 |
+
self.use_short_conv = use_short_conv
|
56 |
+
self.conv_size = conv_size
|
57 |
+
self.expand_k = exapnd_k
|
58 |
+
self.expand_v = exapnd_v
|
59 |
+
self.hidden_act = hidden_act
|
60 |
+
self.max_position_embeddings = max_position_embeddings
|
61 |
+
self.elementwise_affine = elementwise_affine
|
62 |
+
self.norm_eps = norm_eps
|
63 |
+
self.use_rope = use_rope
|
64 |
+
self.attn = attn
|
65 |
+
self.use_cache = use_cache
|
66 |
+
self.initializer_range = initializer_range
|
67 |
+
|
68 |
+
self.fuse_norm = fuse_norm
|
69 |
+
self.fuse_swiglu = fuse_swiglu
|
70 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
71 |
+
self.vocab_size = vocab_size
|
72 |
+
|
73 |
+
if attn is not None:
|
74 |
+
if not isinstance(attn, Dict):
|
75 |
+
raise ValueError("attn must be a dictionary")
|
76 |
+
if 'layers' not in attn:
|
77 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
78 |
+
if 'num_heads' not in attn:
|
79 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
80 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
81 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
82 |
+
attn['window_size'] = attn.get('window_size', None)
|
83 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
84 |
+
|
85 |
+
super().__init__(
|
86 |
+
pad_token_id=pad_token_id,
|
87 |
+
bos_token_id=bos_token_id,
|
88 |
+
eos_token_id=eos_token_id,
|
89 |
+
tie_word_embeddings=tie_word_embeddings,
|
90 |
+
**kwargs,
|
91 |
+
)
|
fla/models/abc/modeling_abc.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.abc import ABCAttention
|
19 |
+
from fla.layers.attn import Attention
|
20 |
+
from fla.models.abc.configuration_abc import ABCConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
23 |
+
from fla.modules import GatedMLP as ABCMLP
|
24 |
+
from fla.modules import RMSNorm
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
if TYPE_CHECKING:
|
29 |
+
from transformers.processing_utils import Unpack
|
30 |
+
|
31 |
+
|
32 |
+
class ABCBlock(nn.Module):
|
33 |
+
def __init__(self, config: ABCConfig, layer_idx: int):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.config = config
|
37 |
+
self.layer_idx = layer_idx
|
38 |
+
|
39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
41 |
+
self.attn = Attention(
|
42 |
+
hidden_size=config.hidden_size,
|
43 |
+
num_heads=config.attn['num_heads'],
|
44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
45 |
+
qkv_bias=config.attn['qkv_bias'],
|
46 |
+
window_size=config.attn['window_size'],
|
47 |
+
rope_theta=config.attn['rope_theta'],
|
48 |
+
max_position_embeddings=config.max_position_embeddings,
|
49 |
+
layer_idx=layer_idx
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
self.attn = ABCAttention(
|
53 |
+
hidden_size=config.hidden_size,
|
54 |
+
expand_k=config.expand_k,
|
55 |
+
expand_v=config.expand_v,
|
56 |
+
num_heads=config.num_heads,
|
57 |
+
num_slots=config.num_slots,
|
58 |
+
use_short_conv=config.use_short_conv,
|
59 |
+
conv_size=config.conv_size,
|
60 |
+
gate_fn=config.hidden_act,
|
61 |
+
elementwise_affine=config.elementwise_affine,
|
62 |
+
norm_eps=config.norm_eps,
|
63 |
+
use_rope=config.use_rope,
|
64 |
+
clamp_min=config.clamp_min,
|
65 |
+
clamp_max=config.clamp_max,
|
66 |
+
fuse_norm=config.fuse_norm,
|
67 |
+
layer_idx=layer_idx
|
68 |
+
)
|
69 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
70 |
+
self.mlp = ABCMLP(
|
71 |
+
hidden_size=config.hidden_size,
|
72 |
+
hidden_ratio=config.hidden_ratio,
|
73 |
+
intermediate_size=config.intermediate_size,
|
74 |
+
hidden_act=config.hidden_act,
|
75 |
+
fuse_swiglu=config.fuse_swiglu
|
76 |
+
)
|
77 |
+
|
78 |
+
def forward(
|
79 |
+
self,
|
80 |
+
hidden_states: torch.Tensor,
|
81 |
+
attention_mask: Optional[torch.Tensor] = None,
|
82 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
83 |
+
use_cache: Optional[bool] = False,
|
84 |
+
output_attentions: Optional[bool] = False,
|
85 |
+
**kwargs: Unpack[Dict]
|
86 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
87 |
+
|
88 |
+
residual = hidden_states
|
89 |
+
|
90 |
+
hidden_states = self.attn_norm(hidden_states)
|
91 |
+
hidden_states, attentions, past_key_values = self.attn(
|
92 |
+
hidden_states=hidden_states,
|
93 |
+
attention_mask=attention_mask,
|
94 |
+
past_key_values=past_key_values,
|
95 |
+
use_cache=use_cache,
|
96 |
+
output_attentions=output_attentions,
|
97 |
+
**kwargs
|
98 |
+
)
|
99 |
+
if self.config.fuse_norm:
|
100 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
101 |
+
else:
|
102 |
+
hidden_states = residual + hidden_states
|
103 |
+
residual = hidden_states
|
104 |
+
hidden_states = self.mlp_norm(hidden_states)
|
105 |
+
hidden_states = self.mlp(hidden_states)
|
106 |
+
hidden_states = residual + hidden_states
|
107 |
+
|
108 |
+
outputs = (hidden_states, attentions, past_key_values)
|
109 |
+
|
110 |
+
return outputs
|
111 |
+
|
112 |
+
|
113 |
+
class ABCPreTrainedModel(PreTrainedModel):
|
114 |
+
|
115 |
+
config_class = ABCConfig
|
116 |
+
base_model_prefix = 'model'
|
117 |
+
supports_gradient_checkpointing = True
|
118 |
+
_no_split_modules = ['ABCBlock']
|
119 |
+
_supports_cache_class = True
|
120 |
+
|
121 |
+
def __init__(self, *inputs, **kwargs):
|
122 |
+
super().__init__(*inputs, **kwargs)
|
123 |
+
|
124 |
+
def _init_weights(
|
125 |
+
self,
|
126 |
+
module: nn.Module,
|
127 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
128 |
+
num_residuals_per_layer: int = 2,
|
129 |
+
):
|
130 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
131 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
132 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
133 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
134 |
+
if module.bias is not None:
|
135 |
+
nn.init.zeros_(module.bias)
|
136 |
+
elif isinstance(module, nn.Embedding):
|
137 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
138 |
+
elif hasattr(module, 'reset_parameters'):
|
139 |
+
module.reset_parameters()
|
140 |
+
|
141 |
+
if prenorm_residual_strategy is not None:
|
142 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
143 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
144 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
145 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
146 |
+
#
|
147 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
148 |
+
p = None
|
149 |
+
if hasattr(module, 'o_proj'):
|
150 |
+
p = module.o_proj.weight
|
151 |
+
elif hasattr(module, 'down_proj'):
|
152 |
+
p = module.down_proj.weight
|
153 |
+
if p is not None:
|
154 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
155 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
156 |
+
# We need to reinit p since this code could be called multiple times
|
157 |
+
# Having just p *= scale would repeatedly scale it down
|
158 |
+
if prenorm_residual_strategy == 'rescale':
|
159 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
160 |
+
with torch.no_grad():
|
161 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
162 |
+
elif prenorm_residual_strategy == 'zero':
|
163 |
+
nn.init.zeros_(p)
|
164 |
+
else:
|
165 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
166 |
+
|
167 |
+
|
168 |
+
class ABCModel(ABCPreTrainedModel):
|
169 |
+
|
170 |
+
def __init__(self, config: ABCConfig):
|
171 |
+
super().__init__(config)
|
172 |
+
self.padding_idx = config.pad_token_id
|
173 |
+
self.vocab_size = config.vocab_size
|
174 |
+
|
175 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
176 |
+
self.layers = nn.ModuleList([ABCBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
177 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
178 |
+
|
179 |
+
self.gradient_checkpointing = False
|
180 |
+
|
181 |
+
self.post_init()
|
182 |
+
|
183 |
+
def get_input_embeddings(self):
|
184 |
+
return self.embeddings
|
185 |
+
|
186 |
+
def set_input_embeddings(self, value):
|
187 |
+
self.embeddings = value
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
input_ids: Optional[torch.LongTensor] = None,
|
192 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
193 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
194 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
195 |
+
use_cache: Optional[bool] = None,
|
196 |
+
output_attentions: Optional[bool] = None,
|
197 |
+
output_hidden_states: Optional[bool] = None,
|
198 |
+
return_dict: Optional[bool] = None,
|
199 |
+
**kwargs: Unpack[Dict]
|
200 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
201 |
+
if output_attentions:
|
202 |
+
warnings.warn("`ABCModel` does not `output_attentions` now, setting it to `False`.")
|
203 |
+
output_attentions = False
|
204 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
205 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
206 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
207 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
208 |
+
|
209 |
+
# retrieve input_ids and inputs_embeds
|
210 |
+
if input_ids is not None and inputs_embeds is not None:
|
211 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
212 |
+
if input_ids is None and inputs_embeds is None:
|
213 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
214 |
+
|
215 |
+
if inputs_embeds is None:
|
216 |
+
inputs_embeds = self.embeddings(input_ids)
|
217 |
+
hidden_states = inputs_embeds
|
218 |
+
|
219 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
220 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
221 |
+
|
222 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
223 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
224 |
+
use_cache = False
|
225 |
+
|
226 |
+
all_hidden_states = () if output_hidden_states else None
|
227 |
+
all_attns = () if output_attentions else None
|
228 |
+
for layer in self.layers:
|
229 |
+
if output_hidden_states:
|
230 |
+
all_hidden_states += (hidden_states,)
|
231 |
+
|
232 |
+
if self.gradient_checkpointing and self.training:
|
233 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
234 |
+
layer.__call__,
|
235 |
+
hidden_states,
|
236 |
+
attention_mask,
|
237 |
+
past_key_values,
|
238 |
+
use_cache,
|
239 |
+
output_attentions,
|
240 |
+
**kwargs
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
hidden_states, attentions, past_key_values = layer(
|
244 |
+
hidden_states,
|
245 |
+
attention_mask,
|
246 |
+
past_key_values=past_key_values,
|
247 |
+
use_cache=use_cache,
|
248 |
+
output_attentions=output_attentions,
|
249 |
+
**kwargs
|
250 |
+
)
|
251 |
+
|
252 |
+
if output_attentions:
|
253 |
+
all_attns += (attentions,)
|
254 |
+
|
255 |
+
hidden_states = self.norm(hidden_states)
|
256 |
+
|
257 |
+
# add hidden states from the last decoder layer
|
258 |
+
if output_hidden_states:
|
259 |
+
all_hidden_states += (hidden_states,)
|
260 |
+
|
261 |
+
if not return_dict:
|
262 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
263 |
+
return BaseModelOutputWithPast(
|
264 |
+
last_hidden_state=hidden_states,
|
265 |
+
past_key_values=past_key_values,
|
266 |
+
hidden_states=all_hidden_states,
|
267 |
+
attentions=all_attns
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
class ABCForCausalLM(ABCPreTrainedModel, GenerationMixin):
|
272 |
+
|
273 |
+
_tied_weights_keys = ["lm_head.weight"]
|
274 |
+
|
275 |
+
def __init__(self, config):
|
276 |
+
super().__init__(config)
|
277 |
+
self.model = ABCModel(config)
|
278 |
+
self.vocab_size = config.vocab_size
|
279 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
280 |
+
self.criterion = None
|
281 |
+
|
282 |
+
# Initialize weights and apply final processing
|
283 |
+
self.post_init()
|
284 |
+
|
285 |
+
def get_input_embeddings(self):
|
286 |
+
return self.model.embeddings
|
287 |
+
|
288 |
+
def set_input_embeddings(self, value):
|
289 |
+
self.model.embeddings = value
|
290 |
+
|
291 |
+
def get_output_embeddings(self):
|
292 |
+
return self.lm_head
|
293 |
+
|
294 |
+
def set_output_embeddings(self, new_embeddings):
|
295 |
+
self.lm_head = new_embeddings
|
296 |
+
|
297 |
+
def set_decoder(self, decoder):
|
298 |
+
self.model = decoder
|
299 |
+
|
300 |
+
def get_decoder(self):
|
301 |
+
return self.model
|
302 |
+
|
303 |
+
def generate(self, *args, **kwargs):
|
304 |
+
try:
|
305 |
+
return super().generate(*args, **kwargs)
|
306 |
+
except AttributeError as exception:
|
307 |
+
if 'past_key_values' in str(exception):
|
308 |
+
raise AttributeError(
|
309 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
310 |
+
f"which is not supported for {self.__class__.__name__}. "
|
311 |
+
f"Try another generation strategy instead. "
|
312 |
+
f"For the available generation strategies, check this doc: "
|
313 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
314 |
+
)
|
315 |
+
else:
|
316 |
+
raise exception
|
317 |
+
|
318 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
319 |
+
def prepare_inputs_for_generation(
|
320 |
+
self,
|
321 |
+
input_ids: torch.LongTensor = None,
|
322 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
323 |
+
attention_mask: Optional[torch.Tensor] = None,
|
324 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
325 |
+
use_cache: bool = True,
|
326 |
+
logits_to_keep: Optional[int] = None,
|
327 |
+
**kwargs
|
328 |
+
):
|
329 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
330 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
331 |
+
input_ids = input_ids[:, -1:]
|
332 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
333 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
334 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
335 |
+
else:
|
336 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
337 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
338 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
339 |
+
# TODO: use `next_tokens` directly instead.
|
340 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
341 |
+
|
342 |
+
if logits_to_keep is not None:
|
343 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
344 |
+
|
345 |
+
model_inputs.update({
|
346 |
+
'past_key_values': past_key_values,
|
347 |
+
'use_cache': use_cache,
|
348 |
+
'attention_mask': attention_mask,
|
349 |
+
})
|
350 |
+
return model_inputs
|
351 |
+
|
352 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
353 |
+
def forward(
|
354 |
+
self,
|
355 |
+
input_ids: torch.LongTensor = None,
|
356 |
+
attention_mask: Optional[torch.Tensor] = None,
|
357 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
358 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
359 |
+
labels: Optional[torch.LongTensor] = None,
|
360 |
+
use_cache: Optional[bool] = None,
|
361 |
+
output_attentions: Optional[bool] = None,
|
362 |
+
output_hidden_states: Optional[bool] = None,
|
363 |
+
return_dict: Optional[bool] = None,
|
364 |
+
logits_to_keep: Optional[int] = 0,
|
365 |
+
**kwargs: Unpack[Dict]
|
366 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
367 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
368 |
+
output_hidden_states = (
|
369 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
370 |
+
)
|
371 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
372 |
+
|
373 |
+
outputs = self.model(
|
374 |
+
input_ids=input_ids,
|
375 |
+
attention_mask=attention_mask,
|
376 |
+
inputs_embeds=inputs_embeds,
|
377 |
+
past_key_values=past_key_values,
|
378 |
+
use_cache=use_cache,
|
379 |
+
output_attentions=output_attentions,
|
380 |
+
output_hidden_states=output_hidden_states,
|
381 |
+
return_dict=return_dict,
|
382 |
+
**kwargs
|
383 |
+
)
|
384 |
+
|
385 |
+
hidden_states = outputs[0]
|
386 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
387 |
+
|
388 |
+
loss, logits = None, None
|
389 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
390 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
391 |
+
if labels is not None:
|
392 |
+
if getattr(self, 'criterion', None) is None:
|
393 |
+
if fuse_linear_and_cross_entropy:
|
394 |
+
criterion = FusedLinearCrossEntropyLoss()
|
395 |
+
elif self.config.fuse_cross_entropy:
|
396 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
397 |
+
else:
|
398 |
+
criterion = nn.CrossEntropyLoss()
|
399 |
+
else:
|
400 |
+
criterion = self.criterion
|
401 |
+
labels = labels.to(hidden_states.device)
|
402 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
403 |
+
if fuse_linear_and_cross_entropy:
|
404 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
405 |
+
else:
|
406 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
407 |
+
|
408 |
+
if not return_dict:
|
409 |
+
output = (logits,) + outputs[1:]
|
410 |
+
return (loss,) + output if loss is not None else output
|
411 |
+
|
412 |
+
return CausalLMOutputWithPast(
|
413 |
+
loss=loss,
|
414 |
+
logits=logits,
|
415 |
+
past_key_values=outputs.past_key_values,
|
416 |
+
hidden_states=outputs.hidden_states,
|
417 |
+
attentions=outputs.attentions,
|
418 |
+
)
|
fla/models/bitnet/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.bitnet.configuration_bitnet import BitNetConfig
|
6 |
+
from fla.models.bitnet.modeling_bitnet import BitNetForCausalLM, BitNetModel
|
7 |
+
|
8 |
+
AutoConfig.register(BitNetConfig.model_type, BitNetConfig)
|
9 |
+
AutoModel.register(BitNetConfig, BitNetModel)
|
10 |
+
AutoModelForCausalLM.register(BitNetConfig, BitNetForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['BitNetConfig', 'BitNetForCausalLM', 'BitNetModel']
|
fla/models/bitnet/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (741 Bytes). View file
|
|
fla/models/bitnet/__pycache__/configuration_bitnet.cpython-311.pyc
ADDED
Binary file (2.64 kB). View file
|
|
fla/models/bitnet/__pycache__/modeling_bitnet.cpython-311.pyc
ADDED
Binary file (19.6 kB). View file
|
|
fla/models/bitnet/configuration_bitnet.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class BitNetConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'bitnet'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
num_hidden_layers: int = 24,
|
17 |
+
num_heads: int = 32,
|
18 |
+
num_kv_heads: int = None,
|
19 |
+
window_size: Optional[int] = None,
|
20 |
+
rope_theta: Optional[float] = 10000.,
|
21 |
+
max_position_embeddings: int = 2048,
|
22 |
+
hidden_ratio: Optional[int] = 4,
|
23 |
+
intermediate_size: Optional[int] = None,
|
24 |
+
hidden_act: str = "swish",
|
25 |
+
initializer_range: float = 0.006,
|
26 |
+
elementwise_affine: Optional[bool] = True,
|
27 |
+
norm_eps: float = 1e-6,
|
28 |
+
use_cache: bool = True,
|
29 |
+
pad_token_id: int = None,
|
30 |
+
bos_token_id: int = 1,
|
31 |
+
eos_token_id: int = 2,
|
32 |
+
tie_word_embeddings: bool = False,
|
33 |
+
fuse_norm: bool = True,
|
34 |
+
fuse_swiglu: bool = True,
|
35 |
+
fuse_cross_entropy: bool = True,
|
36 |
+
vocab_size: int = 32000,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
self.hidden_size = hidden_size
|
40 |
+
self.num_hidden_layers = num_hidden_layers
|
41 |
+
self.num_heads = num_heads
|
42 |
+
self.num_kv_heads = num_kv_heads
|
43 |
+
self.window_size = window_size
|
44 |
+
self.rope_theta = rope_theta
|
45 |
+
self.max_position_embeddings = max_position_embeddings
|
46 |
+
|
47 |
+
self.hidden_ratio = hidden_ratio
|
48 |
+
self.intermediate_size = intermediate_size
|
49 |
+
self.hidden_act = hidden_act
|
50 |
+
|
51 |
+
self.initializer_range = initializer_range
|
52 |
+
self.elementwise_affine = elementwise_affine
|
53 |
+
self.norm_eps = norm_eps
|
54 |
+
self.use_cache = use_cache
|
55 |
+
|
56 |
+
self.fuse_norm = fuse_norm
|
57 |
+
self.fuse_swiglu = fuse_swiglu
|
58 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
59 |
+
self.vocab_size = vocab_size
|
60 |
+
|
61 |
+
super().__init__(
|
62 |
+
pad_token_id=pad_token_id,
|
63 |
+
bos_token_id=bos_token_id,
|
64 |
+
eos_token_id=eos_token_id,
|
65 |
+
tie_word_embeddings=tie_word_embeddings,
|
66 |
+
**kwargs,
|
67 |
+
)
|
fla/models/bitnet/modeling_bitnet.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.bitattn import BitAttention
|
19 |
+
from fla.models.bitnet.configuration_bitnet import BitNetConfig
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm
|
22 |
+
from fla.modules.activations import swiglu
|
23 |
+
from fla.modules.fused_bitlinear import FusedBitLinear
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from transformers.processing_utils import Unpack
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class BitNetMLP(nn.Module):
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
hidden_size: int,
|
36 |
+
hidden_ratio: Optional[int] = None,
|
37 |
+
intermediate_size: Optional[int] = None,
|
38 |
+
hidden_act: str = 'swish',
|
39 |
+
fuse_swiglu: bool = True
|
40 |
+
) -> BitNetMLP:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.hidden_size = hidden_size
|
44 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
45 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
46 |
+
if hidden_ratio is None:
|
47 |
+
hidden_ratio = 4
|
48 |
+
if intermediate_size is None:
|
49 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
50 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
51 |
+
self.hidden_ratio = hidden_ratio
|
52 |
+
self.intermediate_size = intermediate_size
|
53 |
+
self.hidden_act = hidden_act
|
54 |
+
self.fuse_swiglu = fuse_swiglu
|
55 |
+
|
56 |
+
if hidden_act != 'swish':
|
57 |
+
raise ValueError(f'Unsupported hidden_act: {hidden_act}')
|
58 |
+
|
59 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
60 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
61 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self,
|
65 |
+
x: torch.Tensor,
|
66 |
+
**kwargs: Unpack[Any]
|
67 |
+
) -> torch.Tensor:
|
68 |
+
gate, y = self.gate_proj(x), self.up_proj(x)
|
69 |
+
return self.down_proj(swiglu(gate, y))
|
70 |
+
|
71 |
+
|
72 |
+
class BitNetBlock(nn.Module):
|
73 |
+
|
74 |
+
def __init__(self, config: BitNetConfig, layer_idx: int):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.config = config
|
78 |
+
self.layer_idx = layer_idx
|
79 |
+
|
80 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
81 |
+
self.attn = BitAttention(
|
82 |
+
hidden_size=config.hidden_size,
|
83 |
+
num_heads=config.num_heads,
|
84 |
+
num_kv_heads=config.num_kv_heads,
|
85 |
+
window_size=config.window_size,
|
86 |
+
rope_theta=config.rope_theta,
|
87 |
+
max_position_embeddings=config.max_position_embeddings,
|
88 |
+
layer_idx=layer_idx
|
89 |
+
)
|
90 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
91 |
+
self.mlp = BitNetMLP(
|
92 |
+
hidden_size=config.hidden_size,
|
93 |
+
hidden_ratio=config.hidden_ratio,
|
94 |
+
intermediate_size=config.intermediate_size,
|
95 |
+
hidden_act=config.hidden_act,
|
96 |
+
fuse_swiglu=config.fuse_swiglu
|
97 |
+
)
|
98 |
+
|
99 |
+
def forward(
|
100 |
+
self,
|
101 |
+
hidden_states: torch.Tensor,
|
102 |
+
attention_mask: Optional[torch.Tensor] = None,
|
103 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
104 |
+
output_attentions: Optional[bool] = False,
|
105 |
+
use_cache: Optional[bool] = False,
|
106 |
+
**kwargs: Unpack[Any]
|
107 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
108 |
+
|
109 |
+
residual = hidden_states
|
110 |
+
hidden_states = self.attn_norm(hidden_states)
|
111 |
+
hidden_states, attentions, past_key_values = self.attn(
|
112 |
+
hidden_states=hidden_states,
|
113 |
+
attention_mask=attention_mask,
|
114 |
+
past_key_values=past_key_values,
|
115 |
+
use_cache=use_cache,
|
116 |
+
output_attentions=output_attentions,
|
117 |
+
**kwargs
|
118 |
+
)
|
119 |
+
if self.config.fuse_norm:
|
120 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
121 |
+
else:
|
122 |
+
hidden_states = residual + hidden_states
|
123 |
+
residual = hidden_states
|
124 |
+
hidden_states = self.mlp_norm(hidden_states)
|
125 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
126 |
+
hidden_states = residual + hidden_states
|
127 |
+
|
128 |
+
outputs = (hidden_states,)
|
129 |
+
|
130 |
+
if output_attentions:
|
131 |
+
outputs += (attentions,)
|
132 |
+
|
133 |
+
if use_cache:
|
134 |
+
outputs += (past_key_values,)
|
135 |
+
|
136 |
+
return outputs
|
137 |
+
|
138 |
+
|
139 |
+
class BitNetPreTrainedModel(PreTrainedModel):
|
140 |
+
|
141 |
+
config_class = BitNetConfig
|
142 |
+
base_model_prefix = 'model'
|
143 |
+
supports_gradient_checkpointing = True
|
144 |
+
_no_split_modules = ['BitNetBlock']
|
145 |
+
_supports_cache_class = True
|
146 |
+
|
147 |
+
def __init__(self, *inputs, **kwargs):
|
148 |
+
super().__init__(*inputs, **kwargs)
|
149 |
+
|
150 |
+
def _init_weights(
|
151 |
+
self,
|
152 |
+
module: nn.Module,
|
153 |
+
rescale_prenorm_residual: bool = False,
|
154 |
+
num_residuals_per_layer: int = 2,
|
155 |
+
):
|
156 |
+
if isinstance(module, (nn.Linear, nn.Conv1d, FusedBitLinear)):
|
157 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
158 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
159 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
160 |
+
if module.bias is not None:
|
161 |
+
nn.init.zeros_(module.bias)
|
162 |
+
elif isinstance(module, nn.Embedding):
|
163 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
164 |
+
elif hasattr(module, 'reset_parameters'):
|
165 |
+
module.reset_parameters()
|
166 |
+
|
167 |
+
if rescale_prenorm_residual:
|
168 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
169 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
170 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
171 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
172 |
+
#
|
173 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
174 |
+
p = None
|
175 |
+
if hasattr(module, 'o_proj'):
|
176 |
+
p = module.o_proj.weight
|
177 |
+
elif hasattr(module, 'down_proj'):
|
178 |
+
p = module.down_proj.weight
|
179 |
+
if p is not None:
|
180 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
181 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
182 |
+
# We need to reinit p since this code could be called multiple times
|
183 |
+
# Having just p *= scale would repeatedly scale it down
|
184 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
185 |
+
with torch.no_grad():
|
186 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
187 |
+
|
188 |
+
|
189 |
+
class BitNetModel(BitNetPreTrainedModel):
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
config: BitNetConfig
|
194 |
+
) -> BitNetModel:
|
195 |
+
super().__init__(config)
|
196 |
+
self.padding_idx = config.pad_token_id
|
197 |
+
self.vocab_size = config.vocab_size
|
198 |
+
|
199 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
200 |
+
self.layers = nn.ModuleList([BitNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
201 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
202 |
+
|
203 |
+
self.gradient_checkpointing = False
|
204 |
+
|
205 |
+
self.post_init()
|
206 |
+
|
207 |
+
def get_input_embeddings(self):
|
208 |
+
return self.embeddings
|
209 |
+
|
210 |
+
def set_input_embeddings(self, value):
|
211 |
+
self.embeddings = value
|
212 |
+
|
213 |
+
def forward(
|
214 |
+
self,
|
215 |
+
input_ids: Optional[torch.LongTensor] = None,
|
216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
217 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
218 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
219 |
+
use_cache: Optional[bool] = None,
|
220 |
+
output_attentions: Optional[bool] = None,
|
221 |
+
output_hidden_states: Optional[bool] = None,
|
222 |
+
return_dict: Optional[bool] = None,
|
223 |
+
**kwargs: Unpack[Any]
|
224 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
225 |
+
if output_attentions:
|
226 |
+
warnings.warn(
|
227 |
+
"`BitNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
|
228 |
+
)
|
229 |
+
output_attentions = False
|
230 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
231 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
232 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
233 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
234 |
+
|
235 |
+
# retrieve input_ids and inputs_embeds
|
236 |
+
if input_ids is not None and inputs_embeds is not None:
|
237 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
238 |
+
elif input_ids is None and inputs_embeds is None:
|
239 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
240 |
+
|
241 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
242 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
243 |
+
|
244 |
+
if inputs_embeds is None:
|
245 |
+
inputs_embeds = self.embeddings(input_ids)
|
246 |
+
|
247 |
+
# embed positions
|
248 |
+
hidden_states = inputs_embeds
|
249 |
+
|
250 |
+
if self.gradient_checkpointing and self.training:
|
251 |
+
if use_cache:
|
252 |
+
logger.warning_once(
|
253 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
254 |
+
)
|
255 |
+
use_cache = False
|
256 |
+
|
257 |
+
all_hidden_states = () if output_hidden_states else None
|
258 |
+
all_attns = () if output_attentions else None
|
259 |
+
next_cache = None
|
260 |
+
|
261 |
+
for layer in self.layers:
|
262 |
+
if output_hidden_states:
|
263 |
+
all_hidden_states += (hidden_states,)
|
264 |
+
|
265 |
+
if self.gradient_checkpointing and self.training:
|
266 |
+
layer_outputs = self._gradient_checkpointing_func(
|
267 |
+
layer.__call__,
|
268 |
+
hidden_states,
|
269 |
+
attention_mask,
|
270 |
+
past_key_values,
|
271 |
+
output_attentions,
|
272 |
+
use_cache,
|
273 |
+
**kwargs
|
274 |
+
)
|
275 |
+
else:
|
276 |
+
layer_outputs = layer(
|
277 |
+
hidden_states,
|
278 |
+
attention_mask=attention_mask,
|
279 |
+
past_key_values=past_key_values,
|
280 |
+
output_attentions=output_attentions,
|
281 |
+
use_cache=use_cache,
|
282 |
+
**kwargs
|
283 |
+
)
|
284 |
+
|
285 |
+
hidden_states = layer_outputs[0]
|
286 |
+
|
287 |
+
if use_cache:
|
288 |
+
next_cache = layer_outputs[2 if output_attentions else 1]
|
289 |
+
|
290 |
+
if output_attentions:
|
291 |
+
all_attns += (layer_outputs[1],)
|
292 |
+
|
293 |
+
hidden_states = self.norm(hidden_states)
|
294 |
+
|
295 |
+
# add hidden states from the last decoder layer
|
296 |
+
if output_hidden_states:
|
297 |
+
all_hidden_states += (hidden_states,)
|
298 |
+
|
299 |
+
if not return_dict:
|
300 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)
|
301 |
+
|
302 |
+
return BaseModelOutputWithPast(
|
303 |
+
last_hidden_state=hidden_states,
|
304 |
+
past_key_values=next_cache,
|
305 |
+
hidden_states=all_hidden_states,
|
306 |
+
attentions=all_attns
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
class BitNetForCausalLM(BitNetPreTrainedModel, GenerationMixin):
|
311 |
+
|
312 |
+
_tied_weights_keys = ["lm_head.weight"]
|
313 |
+
|
314 |
+
def __init__(self, config):
|
315 |
+
super().__init__(config)
|
316 |
+
self.model = BitNetModel(config)
|
317 |
+
self.vocab_size = config.vocab_size
|
318 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
319 |
+
self.criterion = None
|
320 |
+
|
321 |
+
# Initialize weights and apply final processing
|
322 |
+
self.post_init()
|
323 |
+
|
324 |
+
def get_input_embeddings(self):
|
325 |
+
return self.model.embeddings
|
326 |
+
|
327 |
+
def set_input_embeddings(self, value):
|
328 |
+
self.model.embeddings = value
|
329 |
+
|
330 |
+
def get_output_embeddings(self):
|
331 |
+
return self.lm_head
|
332 |
+
|
333 |
+
def set_output_embeddings(self, new_embeddings):
|
334 |
+
self.lm_head = new_embeddings
|
335 |
+
|
336 |
+
def set_decoder(self, decoder):
|
337 |
+
self.model = decoder
|
338 |
+
|
339 |
+
def get_decoder(self):
|
340 |
+
return self.model
|
341 |
+
|
342 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
343 |
+
def prepare_inputs_for_generation(
|
344 |
+
self,
|
345 |
+
input_ids: torch.LongTensor = None,
|
346 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
347 |
+
attention_mask: Optional[torch.Tensor] = None,
|
348 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
349 |
+
use_cache: bool = True,
|
350 |
+
logits_to_keep: Optional[int] = None,
|
351 |
+
**kwargs
|
352 |
+
):
|
353 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
354 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
355 |
+
input_ids = input_ids[:, -1:]
|
356 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
357 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
358 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
359 |
+
else:
|
360 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
361 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
362 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
363 |
+
# TODO: use `next_tokens` directly instead.
|
364 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
365 |
+
|
366 |
+
if logits_to_keep is not None:
|
367 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
368 |
+
|
369 |
+
model_inputs.update({
|
370 |
+
'past_key_values': past_key_values,
|
371 |
+
'use_cache': use_cache,
|
372 |
+
'attention_mask': attention_mask,
|
373 |
+
})
|
374 |
+
return model_inputs
|
375 |
+
|
376 |
+
def forward(
|
377 |
+
self,
|
378 |
+
input_ids: torch.LongTensor = None,
|
379 |
+
attention_mask: Optional[torch.Tensor] = None,
|
380 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
381 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
382 |
+
labels: Optional[torch.LongTensor] = None,
|
383 |
+
use_cache: Optional[bool] = None,
|
384 |
+
output_attentions: Optional[bool] = None,
|
385 |
+
output_hidden_states: Optional[bool] = None,
|
386 |
+
return_dict: Optional[bool] = None,
|
387 |
+
logits_to_keep: Optional[int] = 0,
|
388 |
+
**kwargs: Unpack[Any]
|
389 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
390 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
391 |
+
output_hidden_states = (
|
392 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
393 |
+
)
|
394 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
395 |
+
|
396 |
+
outputs = self.model(
|
397 |
+
input_ids=input_ids,
|
398 |
+
attention_mask=attention_mask,
|
399 |
+
past_key_values=past_key_values,
|
400 |
+
inputs_embeds=inputs_embeds,
|
401 |
+
use_cache=use_cache,
|
402 |
+
output_attentions=output_attentions,
|
403 |
+
output_hidden_states=output_hidden_states,
|
404 |
+
return_dict=return_dict,
|
405 |
+
**kwargs
|
406 |
+
)
|
407 |
+
|
408 |
+
hidden_states = outputs[0]
|
409 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
410 |
+
|
411 |
+
loss, logits = None, None
|
412 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
413 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
414 |
+
if labels is not None:
|
415 |
+
if getattr(self, 'criterion', None) is None:
|
416 |
+
if fuse_linear_and_cross_entropy:
|
417 |
+
criterion = FusedLinearCrossEntropyLoss()
|
418 |
+
elif self.config.fuse_cross_entropy:
|
419 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
420 |
+
else:
|
421 |
+
criterion = nn.CrossEntropyLoss()
|
422 |
+
else:
|
423 |
+
criterion = self.criterion
|
424 |
+
labels = labels.to(hidden_states.device)
|
425 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
426 |
+
if fuse_linear_and_cross_entropy:
|
427 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
428 |
+
else:
|
429 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
430 |
+
|
431 |
+
if not return_dict:
|
432 |
+
output = (logits,) + outputs[1:]
|
433 |
+
return (loss,) + output if loss is not None else output
|
434 |
+
|
435 |
+
return CausalLMOutputWithPast(
|
436 |
+
loss=loss,
|
437 |
+
logits=logits,
|
438 |
+
past_key_values=outputs.past_key_values,
|
439 |
+
hidden_states=outputs.hidden_states,
|
440 |
+
attentions=outputs.attentions,
|
441 |
+
)
|
fla/models/forgetting_transformer/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.forgetting_transformer.configuration_forgetting_transformer import ForgettingTransformerConfig
|
6 |
+
from fla.models.forgetting_transformer.modeling_forgetting_transformer import (
|
7 |
+
ForgettingTransformerForCausalLM,
|
8 |
+
ForgettingTransformerModel
|
9 |
+
)
|
10 |
+
|
11 |
+
AutoConfig.register(ForgettingTransformerConfig.model_type, ForgettingTransformerConfig)
|
12 |
+
AutoModel.register(ForgettingTransformerConfig, ForgettingTransformerModel)
|
13 |
+
AutoModelForCausalLM.register(ForgettingTransformerConfig, ForgettingTransformerForCausalLM)
|
14 |
+
|
15 |
+
|
16 |
+
__all__ = ['ForgettingTransformerConfig', 'ForgettingTransformerForCausalLM', 'ForgettingTransformerModel']
|
fla/models/forgetting_transformer/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (890 Bytes). View file
|
|
fla/models/forgetting_transformer/__pycache__/configuration_forgetting_transformer.cpython-311.pyc
ADDED
Binary file (2.77 kB). View file
|
|
fla/models/forgetting_transformer/__pycache__/modeling_forgetting_transformer.cpython-311.pyc
ADDED
Binary file (18.1 kB). View file
|
|
fla/models/forgetting_transformer/configuration_forgetting_transformer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class ForgettingTransformerConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'forgetting_transformer'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
num_hidden_layers: int = 24,
|
17 |
+
num_heads: int = 32,
|
18 |
+
num_kv_heads: Optional[int] = None,
|
19 |
+
qkv_bias: bool = False,
|
20 |
+
qk_norm: bool = False,
|
21 |
+
window_size: Optional[int] = None,
|
22 |
+
use_output_gate: bool = False,
|
23 |
+
hidden_ratio: Optional[int] = 4,
|
24 |
+
intermediate_size: Optional[int] = None,
|
25 |
+
hidden_act: str = "swish",
|
26 |
+
initializer_range: float = 0.006,
|
27 |
+
elementwise_affine: Optional[bool] = True,
|
28 |
+
norm_eps: float = 1e-6,
|
29 |
+
use_cache: bool = True,
|
30 |
+
pad_token_id: Optional[int] = None,
|
31 |
+
bos_token_id: int = 1,
|
32 |
+
eos_token_id: int = 2,
|
33 |
+
tie_word_embeddings: bool = False,
|
34 |
+
fuse_norm: bool = True,
|
35 |
+
fuse_swiglu: bool = True,
|
36 |
+
fuse_cross_entropy: bool = True,
|
37 |
+
vocab_size: int = 32000,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.num_hidden_layers = num_hidden_layers
|
42 |
+
self.num_heads = num_heads
|
43 |
+
self.num_kv_heads = num_kv_heads
|
44 |
+
self.qkv_bias = qkv_bias
|
45 |
+
self.qk_norm = qk_norm
|
46 |
+
self.window_size = window_size
|
47 |
+
self.use_output_gate = use_output_gate
|
48 |
+
self.hidden_ratio = hidden_ratio
|
49 |
+
self.intermediate_size = intermediate_size
|
50 |
+
self.hidden_act = hidden_act
|
51 |
+
|
52 |
+
self.initializer_range = initializer_range
|
53 |
+
self.elementwise_affine = elementwise_affine
|
54 |
+
self.norm_eps = norm_eps
|
55 |
+
self.use_cache = use_cache
|
56 |
+
|
57 |
+
self.fuse_norm = fuse_norm
|
58 |
+
self.fuse_swiglu = fuse_swiglu
|
59 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
60 |
+
self.vocab_size = vocab_size
|
61 |
+
|
62 |
+
super().__init__(
|
63 |
+
pad_token_id=pad_token_id,
|
64 |
+
bos_token_id=bos_token_id,
|
65 |
+
eos_token_id=eos_token_id,
|
66 |
+
tie_word_embeddings=tie_word_embeddings,
|
67 |
+
**kwargs,
|
68 |
+
)
|
fla/models/forgetting_transformer/modeling_forgetting_transformer.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.forgetting_attn import ForgettingAttention
|
19 |
+
from fla.models.forgetting_transformer.configuration_forgetting_transformer import ForgettingTransformerConfig
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
22 |
+
from fla.modules import GatedMLP as ForgettingTransformerMLP
|
23 |
+
from fla.modules import RMSNorm
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from transformers.processing_utils import Unpack
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class ForgettingTransformerBlock(nn.Module):
|
33 |
+
|
34 |
+
def __init__(self, config: ForgettingTransformerConfig, layer_idx: int):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.config = config
|
38 |
+
self.layer_idx = layer_idx
|
39 |
+
|
40 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
41 |
+
self.attn = ForgettingAttention(
|
42 |
+
hidden_size=config.hidden_size,
|
43 |
+
num_heads=config.num_heads,
|
44 |
+
num_kv_heads=config.num_kv_heads,
|
45 |
+
qkv_bias=config.qkv_bias,
|
46 |
+
qk_norm=config.qk_norm,
|
47 |
+
window_size=config.window_size,
|
48 |
+
use_output_gate=config.use_output_gate,
|
49 |
+
layer_idx=layer_idx
|
50 |
+
)
|
51 |
+
|
52 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
53 |
+
self.mlp = ForgettingTransformerMLP(
|
54 |
+
hidden_size=config.hidden_size,
|
55 |
+
hidden_ratio=config.hidden_ratio,
|
56 |
+
intermediate_size=config.intermediate_size,
|
57 |
+
hidden_act=config.hidden_act,
|
58 |
+
fuse_swiglu=config.fuse_swiglu
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(
|
62 |
+
self,
|
63 |
+
hidden_states: torch.Tensor,
|
64 |
+
attention_mask: Optional[torch.Tensor] = None,
|
65 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
66 |
+
output_attentions: Optional[bool] = False,
|
67 |
+
use_cache: Optional[bool] = False,
|
68 |
+
**kwargs: Unpack[Any]
|
69 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
70 |
+
|
71 |
+
residual = hidden_states
|
72 |
+
hidden_states = self.attn_norm(hidden_states)
|
73 |
+
hidden_states, attentions, past_key_values = self.attn(
|
74 |
+
hidden_states=hidden_states,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
past_key_values=past_key_values,
|
77 |
+
use_cache=use_cache,
|
78 |
+
output_attentions=output_attentions,
|
79 |
+
**kwargs
|
80 |
+
)
|
81 |
+
if self.config.fuse_norm:
|
82 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
83 |
+
else:
|
84 |
+
hidden_states = residual + hidden_states
|
85 |
+
residual = hidden_states
|
86 |
+
hidden_states = self.mlp_norm(hidden_states)
|
87 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
88 |
+
hidden_states = residual + hidden_states
|
89 |
+
|
90 |
+
outputs = (hidden_states,)
|
91 |
+
|
92 |
+
if output_attentions:
|
93 |
+
outputs += (attentions,)
|
94 |
+
|
95 |
+
if use_cache:
|
96 |
+
outputs += (past_key_values,)
|
97 |
+
|
98 |
+
return outputs
|
99 |
+
|
100 |
+
|
101 |
+
class ForgettingTransformerPreTrainedModel(PreTrainedModel):
|
102 |
+
|
103 |
+
config_class = ForgettingTransformerConfig
|
104 |
+
base_model_prefix = 'model'
|
105 |
+
supports_gradient_checkpointing = True
|
106 |
+
_no_split_modules = ['ForgettingTransformerBlock']
|
107 |
+
_supports_cache_class = True
|
108 |
+
|
109 |
+
def __init__(self, *inputs, **kwargs):
|
110 |
+
super().__init__(*inputs, **kwargs)
|
111 |
+
|
112 |
+
def _init_weights(
|
113 |
+
self,
|
114 |
+
module: nn.Module,
|
115 |
+
rescale_prenorm_residual: bool = False,
|
116 |
+
num_residuals_per_layer: int = 2,
|
117 |
+
):
|
118 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
119 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
120 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
121 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
122 |
+
if module.bias is not None:
|
123 |
+
nn.init.zeros_(module.bias)
|
124 |
+
elif isinstance(module, nn.Embedding):
|
125 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
126 |
+
elif hasattr(module, 'reset_parameters'):
|
127 |
+
module.reset_parameters()
|
128 |
+
|
129 |
+
if rescale_prenorm_residual:
|
130 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
131 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
132 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
133 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
134 |
+
#
|
135 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
136 |
+
p = None
|
137 |
+
if hasattr(module, 'o_proj'):
|
138 |
+
p = module.o_proj.weight
|
139 |
+
elif hasattr(module, 'down_proj'):
|
140 |
+
p = module.down_proj.weight
|
141 |
+
if p is not None:
|
142 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per ForgettingTransformer Block
|
143 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
144 |
+
# We need to reinit p since this code could be called multiple times
|
145 |
+
# Having just p *= scale would repeatedly scale it down
|
146 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
147 |
+
with torch.no_grad():
|
148 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
149 |
+
|
150 |
+
|
151 |
+
class ForgettingTransformerModel(ForgettingTransformerPreTrainedModel):
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
config: ForgettingTransformerConfig
|
156 |
+
) -> ForgettingTransformerModel:
|
157 |
+
super().__init__(config)
|
158 |
+
self.padding_idx = config.pad_token_id
|
159 |
+
self.vocab_size = config.vocab_size
|
160 |
+
|
161 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
162 |
+
self.layers = nn.ModuleList([
|
163 |
+
ForgettingTransformerBlock(config, layer_idx)
|
164 |
+
for layer_idx in range(config.num_hidden_layers)
|
165 |
+
])
|
166 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
167 |
+
|
168 |
+
self.gradient_checkpointing = False
|
169 |
+
|
170 |
+
self.post_init()
|
171 |
+
|
172 |
+
def get_input_embeddings(self):
|
173 |
+
return self.embeddings
|
174 |
+
|
175 |
+
def set_input_embeddings(self, value):
|
176 |
+
self.embeddings = value
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
input_ids: Optional[torch.LongTensor] = None,
|
181 |
+
attention_mask: Optional[torch.Tensor] = None,
|
182 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
183 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
184 |
+
use_cache: Optional[bool] = None,
|
185 |
+
output_attentions: Optional[bool] = None,
|
186 |
+
output_hidden_states: Optional[bool] = None,
|
187 |
+
return_dict: Optional[bool] = None,
|
188 |
+
**kwargs: Unpack[Any]
|
189 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
190 |
+
if output_attentions:
|
191 |
+
warnings.warn(
|
192 |
+
"`ForgettingTransformerModel` does not support output attention weights now, "
|
193 |
+
"so `output_attentions` is set to `False`."
|
194 |
+
)
|
195 |
+
output_attentions = False
|
196 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
197 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
198 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
199 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
200 |
+
|
201 |
+
# retrieve input_ids and inputs_embeds
|
202 |
+
if input_ids is not None and inputs_embeds is not None:
|
203 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
204 |
+
elif input_ids is None and inputs_embeds is None:
|
205 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
206 |
+
|
207 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
208 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
209 |
+
|
210 |
+
if inputs_embeds is None:
|
211 |
+
inputs_embeds = self.embeddings(input_ids)
|
212 |
+
|
213 |
+
# embed positions
|
214 |
+
hidden_states = inputs_embeds
|
215 |
+
|
216 |
+
if self.gradient_checkpointing and self.training:
|
217 |
+
if use_cache:
|
218 |
+
logger.warning_once(
|
219 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
220 |
+
)
|
221 |
+
use_cache = False
|
222 |
+
|
223 |
+
all_hidden_states = () if output_hidden_states else None
|
224 |
+
all_attns = () if output_attentions else None
|
225 |
+
next_cache = None
|
226 |
+
|
227 |
+
for layer in self.layers:
|
228 |
+
if output_hidden_states:
|
229 |
+
all_hidden_states += (hidden_states,)
|
230 |
+
|
231 |
+
if self.gradient_checkpointing and self.training:
|
232 |
+
layer_outputs = self._gradient_checkpointing_func(
|
233 |
+
layer.__call__,
|
234 |
+
hidden_states,
|
235 |
+
attention_mask,
|
236 |
+
past_key_values,
|
237 |
+
output_attentions,
|
238 |
+
use_cache,
|
239 |
+
**kwargs
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
layer_outputs = layer(
|
243 |
+
hidden_states,
|
244 |
+
attention_mask=attention_mask,
|
245 |
+
past_key_values=past_key_values,
|
246 |
+
output_attentions=output_attentions,
|
247 |
+
use_cache=use_cache,
|
248 |
+
**kwargs
|
249 |
+
)
|
250 |
+
|
251 |
+
hidden_states = layer_outputs[0]
|
252 |
+
|
253 |
+
if use_cache:
|
254 |
+
next_cache = layer_outputs[2 if output_attentions else 1]
|
255 |
+
|
256 |
+
if output_attentions:
|
257 |
+
all_attns += (layer_outputs[1],)
|
258 |
+
|
259 |
+
hidden_states = self.norm(hidden_states)
|
260 |
+
|
261 |
+
# add hidden states from the last decoder layer
|
262 |
+
if output_hidden_states:
|
263 |
+
all_hidden_states += (hidden_states,)
|
264 |
+
|
265 |
+
if not return_dict:
|
266 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)
|
267 |
+
|
268 |
+
return BaseModelOutputWithPast(
|
269 |
+
last_hidden_state=hidden_states,
|
270 |
+
past_key_values=next_cache,
|
271 |
+
hidden_states=all_hidden_states,
|
272 |
+
attentions=all_attns
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
class ForgettingTransformerForCausalLM(ForgettingTransformerPreTrainedModel, GenerationMixin):
|
277 |
+
|
278 |
+
_tied_weights_keys = ["lm_head.weight"]
|
279 |
+
|
280 |
+
def __init__(self, config):
|
281 |
+
super().__init__(config)
|
282 |
+
self.model = ForgettingTransformerModel(config)
|
283 |
+
self.vocab_size = config.vocab_size
|
284 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
285 |
+
self.criterion = None
|
286 |
+
|
287 |
+
# Initialize weights and apply final processing
|
288 |
+
self.post_init()
|
289 |
+
|
290 |
+
def get_input_embeddings(self):
|
291 |
+
return self.model.embeddings
|
292 |
+
|
293 |
+
def set_input_embeddings(self, value):
|
294 |
+
self.model.embeddings = value
|
295 |
+
|
296 |
+
def get_output_embeddings(self):
|
297 |
+
return self.lm_head
|
298 |
+
|
299 |
+
def set_output_embeddings(self, new_embeddings):
|
300 |
+
self.lm_head = new_embeddings
|
301 |
+
|
302 |
+
def set_decoder(self, decoder):
|
303 |
+
self.model = decoder
|
304 |
+
|
305 |
+
def get_decoder(self):
|
306 |
+
return self.model
|
307 |
+
|
308 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
309 |
+
def prepare_inputs_for_generation(
|
310 |
+
self,
|
311 |
+
input_ids: torch.LongTensor = None,
|
312 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
315 |
+
use_cache: bool = True,
|
316 |
+
logits_to_keep: Optional[int] = None,
|
317 |
+
**kwargs
|
318 |
+
):
|
319 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
320 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
321 |
+
input_ids = input_ids[:, -1:]
|
322 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
323 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
324 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
325 |
+
else:
|
326 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
327 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
328 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
329 |
+
# TODO: use `next_tokens` directly instead.
|
330 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
331 |
+
|
332 |
+
if logits_to_keep is not None:
|
333 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
334 |
+
|
335 |
+
model_inputs.update({
|
336 |
+
'past_key_values': past_key_values,
|
337 |
+
'use_cache': use_cache,
|
338 |
+
'attention_mask': attention_mask,
|
339 |
+
})
|
340 |
+
return model_inputs
|
341 |
+
|
342 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
343 |
+
def forward(
|
344 |
+
self,
|
345 |
+
input_ids: torch.LongTensor = None,
|
346 |
+
attention_mask: Optional[torch.Tensor] = None,
|
347 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
348 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
349 |
+
labels: Optional[torch.LongTensor] = None,
|
350 |
+
use_cache: Optional[bool] = None,
|
351 |
+
output_attentions: Optional[bool] = None,
|
352 |
+
output_hidden_states: Optional[bool] = None,
|
353 |
+
return_dict: Optional[bool] = None,
|
354 |
+
logits_to_keep: Optional[int] = 0,
|
355 |
+
**kwargs: Unpack[Any]
|
356 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
357 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
358 |
+
output_hidden_states = (
|
359 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
360 |
+
)
|
361 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
362 |
+
|
363 |
+
outputs = self.model(
|
364 |
+
input_ids=input_ids,
|
365 |
+
attention_mask=attention_mask,
|
366 |
+
past_key_values=past_key_values,
|
367 |
+
inputs_embeds=inputs_embeds,
|
368 |
+
use_cache=use_cache,
|
369 |
+
output_attentions=output_attentions,
|
370 |
+
output_hidden_states=output_hidden_states,
|
371 |
+
return_dict=return_dict,
|
372 |
+
**kwargs
|
373 |
+
)
|
374 |
+
|
375 |
+
hidden_states = outputs[0]
|
376 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
377 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -logits_to_keep:])
|
378 |
+
|
379 |
+
loss = None
|
380 |
+
if labels is not None:
|
381 |
+
if getattr(self, 'criterion', None) is None:
|
382 |
+
if fuse_linear_and_cross_entropy:
|
383 |
+
criterion = FusedLinearCrossEntropyLoss()
|
384 |
+
elif self.config.fuse_cross_entropy:
|
385 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
386 |
+
else:
|
387 |
+
criterion = nn.CrossEntropyLoss()
|
388 |
+
else:
|
389 |
+
criterion = self.criterion
|
390 |
+
# Enable model parallelism
|
391 |
+
labels = labels.to(hidden_states.device)
|
392 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
393 |
+
if fuse_linear_and_cross_entropy:
|
394 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
395 |
+
else:
|
396 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
397 |
+
|
398 |
+
if not return_dict:
|
399 |
+
output = (logits,) + outputs[1:]
|
400 |
+
return (loss,) + output if loss is not None else output
|
401 |
+
|
402 |
+
return CausalLMOutputWithPast(
|
403 |
+
loss=loss,
|
404 |
+
logits=logits,
|
405 |
+
past_key_values=outputs.past_key_values,
|
406 |
+
hidden_states=outputs.hidden_states,
|
407 |
+
attentions=outputs.attentions,
|
408 |
+
)
|
fla/models/gated_deltanet/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.gated_deltanet.configuration_gated_deltanet import GatedDeltaNetConfig
|
6 |
+
from fla.models.gated_deltanet.modeling_gated_deltanet import GatedDeltaNetForCausalLM, GatedDeltaNetModel
|
7 |
+
|
8 |
+
AutoConfig.register(GatedDeltaNetConfig.model_type, GatedDeltaNetConfig)
|
9 |
+
AutoModel.register(GatedDeltaNetConfig, GatedDeltaNetModel)
|
10 |
+
AutoModelForCausalLM.register(GatedDeltaNetConfig, GatedDeltaNetForCausalLM)
|
11 |
+
|
12 |
+
__all__ = ['GatedDeltaNetConfig', 'GatedDeltaNetForCausalLM', 'GatedDeltaNetModel']
|
fla/models/gated_deltanet/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (805 Bytes). View file
|
|
fla/models/gated_deltanet/__pycache__/configuration_gated_deltanet.cpython-311.pyc
ADDED
Binary file (3.73 kB). View file
|
|
fla/models/gated_deltanet/__pycache__/modeling_gated_deltanet.cpython-311.pyc
ADDED
Binary file (19.4 kB). View file
|
|
fla/models/gated_deltanet/configuration_gated_deltanet.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class GatedDeltaNetConfig(PretrainedConfig):
|
9 |
+
model_type = 'gated_deltanet'
|
10 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
attn_mode: str = "chunk",
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
expand_v: int = 2,
|
17 |
+
use_gate: bool = True,
|
18 |
+
use_short_conv: bool = True,
|
19 |
+
conv_size: int = 4,
|
20 |
+
head_dim: int = 256,
|
21 |
+
num_heads: int = 6,
|
22 |
+
max_position_embeddings: int = 2048,
|
23 |
+
hidden_ratio: Optional[int] = 4,
|
24 |
+
intermediate_size: Optional[int] = None,
|
25 |
+
hidden_act: str = "swish",
|
26 |
+
num_hidden_layers: int = 21,
|
27 |
+
norm_eps: float = 1e-6,
|
28 |
+
attn: Optional[Dict] = None,
|
29 |
+
use_cache: bool = True,
|
30 |
+
pad_token_id: int = None,
|
31 |
+
bos_token_id: int = 1,
|
32 |
+
eos_token_id: int = 2,
|
33 |
+
tie_word_embeddings: bool = False,
|
34 |
+
initializer_range: float = 0.006,
|
35 |
+
fuse_norm: bool = True,
|
36 |
+
fuse_swiglu: bool = True,
|
37 |
+
fuse_cross_entropy: bool = True,
|
38 |
+
vocab_size: int = 32000,
|
39 |
+
**kwargs
|
40 |
+
):
|
41 |
+
self.attn_mode = attn_mode
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.expand_v = expand_v
|
44 |
+
self.use_gate = use_gate
|
45 |
+
self.use_short_conv = use_short_conv
|
46 |
+
self.conv_size = conv_size
|
47 |
+
self.head_dim = head_dim
|
48 |
+
self.num_heads = num_heads
|
49 |
+
self.max_position_embeddings = max_position_embeddings
|
50 |
+
|
51 |
+
self.hidden_ratio = hidden_ratio
|
52 |
+
self.intermediate_size = intermediate_size
|
53 |
+
self.hidden_act = hidden_act
|
54 |
+
self.num_hidden_layers = num_hidden_layers
|
55 |
+
self.norm_eps = norm_eps
|
56 |
+
self.attn = attn
|
57 |
+
self.use_cache = use_cache
|
58 |
+
self.initializer_range = initializer_range
|
59 |
+
|
60 |
+
self.fuse_norm = fuse_norm
|
61 |
+
self.fuse_swiglu = fuse_swiglu
|
62 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
63 |
+
self.vocab_size = vocab_size
|
64 |
+
|
65 |
+
if attn is not None:
|
66 |
+
if not isinstance(attn, Dict):
|
67 |
+
raise ValueError("attn must be a dictionary")
|
68 |
+
if 'layers' not in attn:
|
69 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
70 |
+
if 'num_heads' not in attn:
|
71 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
72 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
73 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
74 |
+
attn['window_size'] = attn.get('window_size', None)
|
75 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
76 |
+
|
77 |
+
super().__init__(
|
78 |
+
pad_token_id=pad_token_id,
|
79 |
+
bos_token_id=bos_token_id,
|
80 |
+
eos_token_id=eos_token_id,
|
81 |
+
tie_word_embeddings=tie_word_embeddings,
|
82 |
+
**kwargs,
|
83 |
+
)
|
fla/models/gated_deltanet/modeling_gated_deltanet.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.layers.gated_deltanet import GatedDeltaNet
|
20 |
+
from fla.models.gated_deltanet.configuration_gated_deltanet import GatedDeltaNetConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
23 |
+
from fla.modules import GatedMLP as GatedDeltaNetMLP
|
24 |
+
from fla.modules import RMSNorm
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers.processing_utils import Unpack
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class GatedDeltaNetBlock(nn.Module):
|
34 |
+
def __init__(self, config: GatedDeltaNetConfig, layer_idx: int):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.config = config
|
38 |
+
self.layer_idx = layer_idx
|
39 |
+
|
40 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
41 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
42 |
+
self.attn = Attention(
|
43 |
+
hidden_size=config.hidden_size,
|
44 |
+
num_heads=config.attn['num_heads'],
|
45 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
46 |
+
qkv_bias=config.attn['qkv_bias'],
|
47 |
+
window_size=config.attn['window_size'],
|
48 |
+
rope_theta=config.attn['rope_theta'],
|
49 |
+
max_position_embeddings=config.max_position_embeddings,
|
50 |
+
layer_idx=layer_idx
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
self.attn = GatedDeltaNet(
|
54 |
+
mode=config.attn_mode,
|
55 |
+
hidden_size=config.hidden_size,
|
56 |
+
expand_v=config.expand_v,
|
57 |
+
head_dim=config.head_dim,
|
58 |
+
num_heads=config.num_heads,
|
59 |
+
use_gate=config.use_gate,
|
60 |
+
use_short_conv=config.use_short_conv,
|
61 |
+
conv_size=config.conv_size,
|
62 |
+
norm_eps=config.norm_eps,
|
63 |
+
layer_idx=layer_idx
|
64 |
+
)
|
65 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
66 |
+
self.mlp = GatedDeltaNetMLP(
|
67 |
+
hidden_size=config.hidden_size,
|
68 |
+
hidden_ratio=config.hidden_ratio,
|
69 |
+
intermediate_size=config.intermediate_size,
|
70 |
+
hidden_act=config.hidden_act,
|
71 |
+
fuse_swiglu=config.fuse_swiglu
|
72 |
+
)
|
73 |
+
|
74 |
+
def forward(
|
75 |
+
self,
|
76 |
+
hidden_states: torch.Tensor,
|
77 |
+
attention_mask: Optional[torch.Tensor] = None,
|
78 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
79 |
+
use_cache: Optional[bool] = False,
|
80 |
+
output_attentions: Optional[bool] = False,
|
81 |
+
**kwargs: Unpack[Dict]
|
82 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
83 |
+
residual = hidden_states
|
84 |
+
hidden_states = self.attn_norm(hidden_states)
|
85 |
+
hidden_states, attentions, past_key_values = self.attn(
|
86 |
+
hidden_states=hidden_states,
|
87 |
+
attention_mask=attention_mask,
|
88 |
+
past_key_values=past_key_values,
|
89 |
+
use_cache=use_cache,
|
90 |
+
output_attentions=output_attentions,
|
91 |
+
**kwargs
|
92 |
+
)
|
93 |
+
if self.config.fuse_norm:
|
94 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
95 |
+
else:
|
96 |
+
hidden_states = residual + hidden_states
|
97 |
+
residual = hidden_states
|
98 |
+
hidden_states = self.mlp_norm(hidden_states)
|
99 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
100 |
+
hidden_states = residual + hidden_states
|
101 |
+
|
102 |
+
outputs = (hidden_states, attentions, past_key_values)
|
103 |
+
|
104 |
+
return outputs
|
105 |
+
|
106 |
+
|
107 |
+
class GatedDeltaNetPreTrainedModel(PreTrainedModel):
|
108 |
+
|
109 |
+
config_class = GatedDeltaNetConfig
|
110 |
+
base_model_prefix = 'model'
|
111 |
+
supports_gradient_checkpointing = True
|
112 |
+
_no_split_modules = ['GatedDeltaNetBlock']
|
113 |
+
_supports_cache_class = True
|
114 |
+
|
115 |
+
def __init__(self, *inputs, **kwargs):
|
116 |
+
super().__init__(*inputs, **kwargs)
|
117 |
+
|
118 |
+
def _init_weights(
|
119 |
+
self,
|
120 |
+
module: nn.Module,
|
121 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
122 |
+
num_residuals_per_layer: int = 2,
|
123 |
+
):
|
124 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
125 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
126 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
127 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
128 |
+
if module.bias is not None:
|
129 |
+
nn.init.zeros_(module.bias)
|
130 |
+
elif isinstance(module, nn.Embedding):
|
131 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
132 |
+
elif hasattr(module, 'reset_parameters'):
|
133 |
+
module.reset_parameters()
|
134 |
+
|
135 |
+
if prenorm_residual_strategy is not None:
|
136 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
137 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
138 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
139 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
140 |
+
#
|
141 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
142 |
+
p = None
|
143 |
+
if hasattr(module, 'o_proj'):
|
144 |
+
p = module.o_proj.weight
|
145 |
+
elif hasattr(module, 'down_proj'):
|
146 |
+
p = module.down_proj.weight
|
147 |
+
if p is not None:
|
148 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
149 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
150 |
+
# We need to reinit p since this code could be called multiple times
|
151 |
+
# Having just p *= scale would repeatedly scale it down
|
152 |
+
if prenorm_residual_strategy == 'rescale':
|
153 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
154 |
+
with torch.no_grad():
|
155 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
156 |
+
elif prenorm_residual_strategy == 'zero':
|
157 |
+
nn.init.zeros_(p)
|
158 |
+
else:
|
159 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
160 |
+
|
161 |
+
|
162 |
+
class GatedDeltaNetModel(GatedDeltaNetPreTrainedModel):
|
163 |
+
|
164 |
+
def __init__(self, config: GatedDeltaNetConfig):
|
165 |
+
super().__init__(config)
|
166 |
+
self.padding_idx = config.pad_token_id
|
167 |
+
self.vocab_size = config.vocab_size
|
168 |
+
|
169 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
170 |
+
self.layers = nn.ModuleList([GatedDeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
171 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
172 |
+
|
173 |
+
self.gradient_checkpointing = False
|
174 |
+
|
175 |
+
self.post_init()
|
176 |
+
|
177 |
+
def get_input_embeddings(self):
|
178 |
+
return self.embeddings
|
179 |
+
|
180 |
+
def set_input_embeddings(self, value):
|
181 |
+
self.embeddings = value
|
182 |
+
|
183 |
+
def forward(
|
184 |
+
self,
|
185 |
+
input_ids: Optional[torch.LongTensor] = None,
|
186 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
187 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
188 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
189 |
+
use_cache: Optional[bool] = None,
|
190 |
+
output_attentions: Optional[bool] = None,
|
191 |
+
output_hidden_states: Optional[bool] = None,
|
192 |
+
return_dict: Optional[bool] = None,
|
193 |
+
**kwargs: Unpack[Dict]
|
194 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
195 |
+
if output_attentions:
|
196 |
+
warnings.warn("`GatedDeltaNetModel` does not `output_attentions` now, setting it to `False`.")
|
197 |
+
output_attentions = False
|
198 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
199 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
200 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
201 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
202 |
+
|
203 |
+
# retrieve input_ids and inputs_embeds
|
204 |
+
if input_ids is not None and inputs_embeds is not None:
|
205 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
206 |
+
if input_ids is None and inputs_embeds is None:
|
207 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
208 |
+
|
209 |
+
if inputs_embeds is None:
|
210 |
+
inputs_embeds = self.embeddings(input_ids)
|
211 |
+
hidden_states = inputs_embeds
|
212 |
+
|
213 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
214 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
215 |
+
|
216 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
217 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
218 |
+
use_cache = False
|
219 |
+
|
220 |
+
all_hidden_states = () if output_hidden_states else None
|
221 |
+
all_attns = () if output_attentions else None
|
222 |
+
for layer in self.layers:
|
223 |
+
if output_hidden_states:
|
224 |
+
all_hidden_states += (hidden_states,)
|
225 |
+
|
226 |
+
if self.gradient_checkpointing and self.training:
|
227 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
228 |
+
layer.__call__,
|
229 |
+
hidden_states,
|
230 |
+
attention_mask,
|
231 |
+
past_key_values,
|
232 |
+
use_cache,
|
233 |
+
output_attentions,
|
234 |
+
**kwargs
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
hidden_states, attentions, past_key_values = layer(
|
238 |
+
hidden_states,
|
239 |
+
attention_mask=attention_mask,
|
240 |
+
past_key_values=past_key_values,
|
241 |
+
use_cache=use_cache,
|
242 |
+
output_attentions=output_attentions,
|
243 |
+
**kwargs
|
244 |
+
)
|
245 |
+
|
246 |
+
if output_attentions:
|
247 |
+
all_attns += (attentions,)
|
248 |
+
|
249 |
+
hidden_states = self.norm(hidden_states)
|
250 |
+
|
251 |
+
# add hidden states from the last decoder layer
|
252 |
+
if output_hidden_states:
|
253 |
+
all_hidden_states += (hidden_states,)
|
254 |
+
|
255 |
+
if not return_dict:
|
256 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
257 |
+
return BaseModelOutputWithPast(
|
258 |
+
last_hidden_state=hidden_states,
|
259 |
+
past_key_values=past_key_values,
|
260 |
+
hidden_states=all_hidden_states,
|
261 |
+
attentions=all_attns
|
262 |
+
)
|
263 |
+
|
264 |
+
|
265 |
+
class GatedDeltaNetForCausalLM(GatedDeltaNetPreTrainedModel, GenerationMixin):
|
266 |
+
|
267 |
+
_tied_weights_keys = ["lm_head.weight"]
|
268 |
+
|
269 |
+
def __init__(self, config):
|
270 |
+
super().__init__(config)
|
271 |
+
self.model = GatedDeltaNetModel(config)
|
272 |
+
self.vocab_size = config.vocab_size
|
273 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
274 |
+
self.criterion = None
|
275 |
+
|
276 |
+
# Initialize weights and apply final processing
|
277 |
+
self.post_init()
|
278 |
+
|
279 |
+
def get_input_embeddings(self):
|
280 |
+
return self.model.embeddings
|
281 |
+
|
282 |
+
def set_input_embeddings(self, value):
|
283 |
+
self.model.embeddings = value
|
284 |
+
|
285 |
+
def get_output_embeddings(self):
|
286 |
+
return self.lm_head
|
287 |
+
|
288 |
+
def set_output_embeddings(self, new_embeddings):
|
289 |
+
self.lm_head = new_embeddings
|
290 |
+
|
291 |
+
def set_decoder(self, decoder):
|
292 |
+
self.model = decoder
|
293 |
+
|
294 |
+
def get_decoder(self):
|
295 |
+
return self.model
|
296 |
+
|
297 |
+
def generate(self, *args, **kwargs):
|
298 |
+
try:
|
299 |
+
return super().generate(*args, **kwargs)
|
300 |
+
except AttributeError as exception:
|
301 |
+
if 'past_key_values' in str(exception):
|
302 |
+
raise AttributeError(
|
303 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
304 |
+
f"which is not supported for {self.__class__.__name__}. "
|
305 |
+
f"Try another generation strategy instead. "
|
306 |
+
f"For the available generation strategies, check this doc: "
|
307 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
raise exception
|
311 |
+
|
312 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
313 |
+
def prepare_inputs_for_generation(
|
314 |
+
self,
|
315 |
+
input_ids: torch.LongTensor = None,
|
316 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
317 |
+
attention_mask: Optional[torch.Tensor] = None,
|
318 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
319 |
+
use_cache: bool = True,
|
320 |
+
logits_to_keep: Optional[int] = None,
|
321 |
+
**kwargs
|
322 |
+
):
|
323 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
324 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
325 |
+
input_ids = input_ids[:, -1:]
|
326 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
327 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
328 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
329 |
+
else:
|
330 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
331 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
332 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
333 |
+
# TODO: use `next_tokens` directly instead.
|
334 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
335 |
+
|
336 |
+
if logits_to_keep is not None:
|
337 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
338 |
+
|
339 |
+
model_inputs.update({
|
340 |
+
'past_key_values': past_key_values,
|
341 |
+
'use_cache': use_cache,
|
342 |
+
'attention_mask': attention_mask,
|
343 |
+
})
|
344 |
+
return model_inputs
|
345 |
+
|
346 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
347 |
+
def forward(
|
348 |
+
self,
|
349 |
+
input_ids: torch.LongTensor = None,
|
350 |
+
attention_mask: Optional[torch.Tensor] = None,
|
351 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
352 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
353 |
+
labels: Optional[torch.LongTensor] = None,
|
354 |
+
use_cache: Optional[bool] = None,
|
355 |
+
output_attentions: Optional[bool] = None,
|
356 |
+
output_hidden_states: Optional[bool] = None,
|
357 |
+
return_dict: Optional[bool] = None,
|
358 |
+
logits_to_keep: Optional[int] = 0,
|
359 |
+
**kwargs: Unpack[Dict]
|
360 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
361 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
362 |
+
output_hidden_states = (
|
363 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
364 |
+
)
|
365 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
366 |
+
|
367 |
+
outputs = self.model(
|
368 |
+
input_ids=input_ids,
|
369 |
+
attention_mask=attention_mask,
|
370 |
+
inputs_embeds=inputs_embeds,
|
371 |
+
past_key_values=past_key_values,
|
372 |
+
use_cache=use_cache,
|
373 |
+
output_attentions=output_attentions,
|
374 |
+
output_hidden_states=output_hidden_states,
|
375 |
+
return_dict=return_dict,
|
376 |
+
**kwargs
|
377 |
+
)
|
378 |
+
|
379 |
+
hidden_states = outputs[0]
|
380 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
381 |
+
|
382 |
+
loss, logits = None, None
|
383 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
384 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
385 |
+
if labels is not None:
|
386 |
+
if getattr(self, 'criterion', None) is None:
|
387 |
+
if fuse_linear_and_cross_entropy:
|
388 |
+
criterion = FusedLinearCrossEntropyLoss()
|
389 |
+
elif self.config.fuse_cross_entropy:
|
390 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
391 |
+
else:
|
392 |
+
criterion = nn.CrossEntropyLoss()
|
393 |
+
else:
|
394 |
+
criterion = self.criterion
|
395 |
+
labels = labels.to(hidden_states.device)
|
396 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
397 |
+
if fuse_linear_and_cross_entropy:
|
398 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
399 |
+
else:
|
400 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
401 |
+
|
402 |
+
if not return_dict:
|
403 |
+
output = (logits,) + outputs[1:]
|
404 |
+
return (loss,) + output if loss is not None else output
|
405 |
+
|
406 |
+
return CausalLMOutputWithPast(
|
407 |
+
loss=loss,
|
408 |
+
logits=logits,
|
409 |
+
past_key_values=outputs.past_key_values,
|
410 |
+
hidden_states=outputs.hidden_states,
|
411 |
+
attentions=outputs.attentions,
|
412 |
+
)
|
fla/models/gla/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.gla.configuration_gla import GLAConfig
|
6 |
+
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
|
7 |
+
|
8 |
+
AutoConfig.register(GLAConfig.model_type, GLAConfig)
|
9 |
+
AutoModel.register(GLAConfig, GLAModel)
|
10 |
+
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']
|
fla/models/gla/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (716 Bytes). View file
|
|
fla/models/gla/__pycache__/configuration_gla.cpython-311.pyc
ADDED
Binary file (4.14 kB). View file
|
|
fla/models/gla/__pycache__/modeling_gla.cpython-311.pyc
ADDED
Binary file (19.4 kB). View file
|
|
fla/models/gla/modeling_gla.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.layers.gla import GatedLinearAttention
|
20 |
+
from fla.models.gla.configuration_gla import GLAConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
23 |
+
from fla.modules import GatedMLP as GLAMLP
|
24 |
+
from fla.modules import RMSNorm
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers.processing_utils import Unpack
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class GLABlock(nn.Module):
|
33 |
+
def __init__(self, config: GLAConfig, layer_idx: int):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.config = config
|
37 |
+
self.layer_idx = layer_idx
|
38 |
+
|
39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
41 |
+
self.attn = Attention(
|
42 |
+
hidden_size=config.hidden_size,
|
43 |
+
num_heads=config.attn['num_heads'],
|
44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
45 |
+
qkv_bias=config.attn['qkv_bias'],
|
46 |
+
window_size=config.attn['window_size'],
|
47 |
+
rope_theta=config.attn['rope_theta'],
|
48 |
+
max_position_embeddings=config.max_position_embeddings,
|
49 |
+
layer_idx=layer_idx
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
self.attn = GatedLinearAttention(
|
53 |
+
mode=config.attn_mode,
|
54 |
+
hidden_size=config.hidden_size,
|
55 |
+
expand_k=config.expand_k,
|
56 |
+
expand_v=config.expand_v,
|
57 |
+
num_heads=config.num_heads,
|
58 |
+
num_kv_heads=config.num_kv_heads,
|
59 |
+
feature_map=config.feature_map,
|
60 |
+
use_short_conv=config.use_short_conv,
|
61 |
+
conv_size=config.conv_size,
|
62 |
+
use_output_gate=config.use_output_gate,
|
63 |
+
gate_fn=config.hidden_act,
|
64 |
+
elementwise_affine=config.elementwise_affine,
|
65 |
+
norm_eps=config.norm_eps,
|
66 |
+
clamp_min=config.clamp_min,
|
67 |
+
fuse_norm=config.fuse_norm,
|
68 |
+
layer_idx=layer_idx
|
69 |
+
)
|
70 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
71 |
+
self.mlp = GLAMLP(
|
72 |
+
hidden_size=config.hidden_size,
|
73 |
+
hidden_ratio=config.hidden_ratio,
|
74 |
+
intermediate_size=config.intermediate_size,
|
75 |
+
hidden_act=config.hidden_act,
|
76 |
+
fuse_swiglu=config.fuse_swiglu
|
77 |
+
)
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
hidden_states: torch.Tensor,
|
82 |
+
attention_mask: Optional[torch.Tensor] = None,
|
83 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
84 |
+
use_cache: Optional[bool] = False,
|
85 |
+
output_attentions: Optional[bool] = False,
|
86 |
+
**kwargs: Unpack[Dict]
|
87 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
88 |
+
residual = hidden_states
|
89 |
+
hidden_states = self.attn_norm(hidden_states)
|
90 |
+
hidden_states, attentions, past_key_values = self.attn(
|
91 |
+
hidden_states=hidden_states,
|
92 |
+
attention_mask=attention_mask,
|
93 |
+
past_key_values=past_key_values,
|
94 |
+
use_cache=use_cache,
|
95 |
+
output_attentions=output_attentions,
|
96 |
+
**kwargs
|
97 |
+
)
|
98 |
+
if self.config.fuse_norm:
|
99 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
100 |
+
else:
|
101 |
+
hidden_states = residual + hidden_states
|
102 |
+
residual = hidden_states
|
103 |
+
hidden_states = self.mlp_norm(hidden_states)
|
104 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
105 |
+
hidden_states = residual + hidden_states
|
106 |
+
|
107 |
+
outputs = (hidden_states, attentions, past_key_values)
|
108 |
+
|
109 |
+
return outputs
|
110 |
+
|
111 |
+
|
112 |
+
class GLAPreTrainedModel(PreTrainedModel):
|
113 |
+
|
114 |
+
config_class = GLAConfig
|
115 |
+
base_model_prefix = 'model'
|
116 |
+
supports_gradient_checkpointing = True
|
117 |
+
_no_split_modules = ['GLABlock']
|
118 |
+
_supports_cache_class = True
|
119 |
+
|
120 |
+
def __init__(self, *inputs, **kwargs):
|
121 |
+
super().__init__(*inputs, **kwargs)
|
122 |
+
|
123 |
+
def _init_weights(
|
124 |
+
self,
|
125 |
+
module: nn.Module,
|
126 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
127 |
+
num_residuals_per_layer: int = 2,
|
128 |
+
):
|
129 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
130 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
131 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
132 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
133 |
+
if module.bias is not None:
|
134 |
+
nn.init.zeros_(module.bias)
|
135 |
+
elif isinstance(module, nn.Embedding):
|
136 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
137 |
+
elif hasattr(module, 'reset_parameters'):
|
138 |
+
module.reset_parameters()
|
139 |
+
|
140 |
+
if prenorm_residual_strategy is not None:
|
141 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
142 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
143 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
144 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
145 |
+
#
|
146 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
147 |
+
p = None
|
148 |
+
if hasattr(module, 'o_proj'):
|
149 |
+
p = module.o_proj.weight
|
150 |
+
elif hasattr(module, 'down_proj'):
|
151 |
+
p = module.down_proj.weight
|
152 |
+
if p is not None:
|
153 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
154 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
155 |
+
# We need to reinit p since this code could be called multiple times
|
156 |
+
# Having just p *= scale would repeatedly scale it down
|
157 |
+
if prenorm_residual_strategy == 'rescale':
|
158 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
159 |
+
with torch.no_grad():
|
160 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
161 |
+
elif prenorm_residual_strategy == 'zero':
|
162 |
+
nn.init.zeros_(p)
|
163 |
+
else:
|
164 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
165 |
+
|
166 |
+
|
167 |
+
class GLAModel(GLAPreTrainedModel):
|
168 |
+
|
169 |
+
def __init__(self, config: GLAConfig):
|
170 |
+
super().__init__(config)
|
171 |
+
self.padding_idx = config.pad_token_id
|
172 |
+
self.vocab_size = config.vocab_size
|
173 |
+
|
174 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
175 |
+
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
176 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
177 |
+
|
178 |
+
self.gradient_checkpointing = False
|
179 |
+
|
180 |
+
self.post_init()
|
181 |
+
|
182 |
+
def get_input_embeddings(self):
|
183 |
+
return self.embeddings
|
184 |
+
|
185 |
+
def set_input_embeddings(self, value):
|
186 |
+
self.embeddings = value
|
187 |
+
|
188 |
+
def forward(
|
189 |
+
self,
|
190 |
+
input_ids: Optional[torch.LongTensor] = None,
|
191 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
192 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
193 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
194 |
+
use_cache: Optional[bool] = None,
|
195 |
+
output_attentions: Optional[bool] = None,
|
196 |
+
output_hidden_states: Optional[bool] = None,
|
197 |
+
return_dict: Optional[bool] = None,
|
198 |
+
**kwargs: Unpack[Dict]
|
199 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
200 |
+
if output_attentions:
|
201 |
+
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
|
202 |
+
output_attentions = False
|
203 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
204 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
205 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
206 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
207 |
+
|
208 |
+
# retrieve input_ids and inputs_embeds
|
209 |
+
if input_ids is not None and inputs_embeds is not None:
|
210 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
211 |
+
if input_ids is None and inputs_embeds is None:
|
212 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
213 |
+
|
214 |
+
if inputs_embeds is None:
|
215 |
+
inputs_embeds = self.embeddings(input_ids)
|
216 |
+
hidden_states = inputs_embeds
|
217 |
+
|
218 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
219 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
220 |
+
|
221 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
222 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
223 |
+
use_cache = False
|
224 |
+
|
225 |
+
all_hidden_states = () if output_hidden_states else None
|
226 |
+
all_attns = () if output_attentions else None
|
227 |
+
for layer in self.layers:
|
228 |
+
if output_hidden_states:
|
229 |
+
all_hidden_states += (hidden_states,)
|
230 |
+
|
231 |
+
if self.gradient_checkpointing and self.training:
|
232 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
233 |
+
layer.__call__,
|
234 |
+
hidden_states,
|
235 |
+
attention_mask,
|
236 |
+
past_key_values,
|
237 |
+
use_cache,
|
238 |
+
output_attentions,
|
239 |
+
**kwargs
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
hidden_states, attentions, past_key_values = layer(
|
243 |
+
hidden_states,
|
244 |
+
attention_mask=attention_mask,
|
245 |
+
past_key_values=past_key_values,
|
246 |
+
use_cache=use_cache,
|
247 |
+
output_attentions=output_attentions,
|
248 |
+
**kwargs
|
249 |
+
)
|
250 |
+
|
251 |
+
if output_attentions:
|
252 |
+
all_attns += (attentions,)
|
253 |
+
|
254 |
+
hidden_states = self.norm(hidden_states)
|
255 |
+
|
256 |
+
# add hidden states from the last decoder layer
|
257 |
+
if output_hidden_states:
|
258 |
+
all_hidden_states += (hidden_states,)
|
259 |
+
|
260 |
+
if not return_dict:
|
261 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
262 |
+
return BaseModelOutputWithPast(
|
263 |
+
last_hidden_state=hidden_states,
|
264 |
+
past_key_values=past_key_values,
|
265 |
+
hidden_states=all_hidden_states,
|
266 |
+
attentions=all_attns
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
class GLAForCausalLM(GLAPreTrainedModel, GenerationMixin):
|
271 |
+
|
272 |
+
_tied_weights_keys = ["lm_head.weight"]
|
273 |
+
|
274 |
+
def __init__(self, config):
|
275 |
+
super().__init__(config)
|
276 |
+
self.model = GLAModel(config)
|
277 |
+
self.vocab_size = config.vocab_size
|
278 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
279 |
+
self.criterion = None
|
280 |
+
|
281 |
+
# Initialize weights and apply final processing
|
282 |
+
self.post_init()
|
283 |
+
|
284 |
+
def get_input_embeddings(self):
|
285 |
+
return self.model.embeddings
|
286 |
+
|
287 |
+
def set_input_embeddings(self, value):
|
288 |
+
self.model.embeddings = value
|
289 |
+
|
290 |
+
def get_output_embeddings(self):
|
291 |
+
return self.lm_head
|
292 |
+
|
293 |
+
def set_output_embeddings(self, new_embeddings):
|
294 |
+
self.lm_head = new_embeddings
|
295 |
+
|
296 |
+
def set_decoder(self, decoder):
|
297 |
+
self.model = decoder
|
298 |
+
|
299 |
+
def get_decoder(self):
|
300 |
+
return self.model
|
301 |
+
|
302 |
+
def generate(self, *args, **kwargs):
|
303 |
+
try:
|
304 |
+
return super().generate(*args, **kwargs)
|
305 |
+
except AttributeError as exception:
|
306 |
+
if 'past_key_values' in str(exception):
|
307 |
+
raise AttributeError(
|
308 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
309 |
+
f"which is not supported for {self.__class__.__name__}. "
|
310 |
+
f"Try another generation strategy instead. "
|
311 |
+
f"For the available generation strategies, check this doc: "
|
312 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
313 |
+
)
|
314 |
+
else:
|
315 |
+
raise exception
|
316 |
+
|
317 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
318 |
+
def prepare_inputs_for_generation(
|
319 |
+
self,
|
320 |
+
input_ids: torch.LongTensor = None,
|
321 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
322 |
+
attention_mask: Optional[torch.Tensor] = None,
|
323 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
324 |
+
use_cache: bool = True,
|
325 |
+
logits_to_keep: Optional[int] = None,
|
326 |
+
**kwargs
|
327 |
+
):
|
328 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
329 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
330 |
+
input_ids = input_ids[:, -1:]
|
331 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
332 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
333 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
334 |
+
else:
|
335 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
336 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
337 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
338 |
+
# TODO: use `next_tokens` directly instead.
|
339 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
340 |
+
|
341 |
+
if logits_to_keep is not None:
|
342 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
343 |
+
|
344 |
+
model_inputs.update({
|
345 |
+
'past_key_values': past_key_values,
|
346 |
+
'use_cache': use_cache,
|
347 |
+
'attention_mask': attention_mask,
|
348 |
+
})
|
349 |
+
return model_inputs
|
350 |
+
|
351 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
352 |
+
def forward(
|
353 |
+
self,
|
354 |
+
input_ids: torch.LongTensor = None,
|
355 |
+
attention_mask: Optional[torch.Tensor] = None,
|
356 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
357 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
358 |
+
labels: Optional[torch.LongTensor] = None,
|
359 |
+
use_cache: Optional[bool] = None,
|
360 |
+
output_attentions: Optional[bool] = None,
|
361 |
+
output_hidden_states: Optional[bool] = None,
|
362 |
+
return_dict: Optional[bool] = None,
|
363 |
+
logits_to_keep: Optional[int] = 0,
|
364 |
+
**kwargs: Unpack[Dict]
|
365 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
366 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
367 |
+
output_hidden_states = (
|
368 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
369 |
+
)
|
370 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
371 |
+
|
372 |
+
outputs = self.model(
|
373 |
+
input_ids=input_ids,
|
374 |
+
attention_mask=attention_mask,
|
375 |
+
inputs_embeds=inputs_embeds,
|
376 |
+
past_key_values=past_key_values,
|
377 |
+
use_cache=use_cache,
|
378 |
+
output_attentions=output_attentions,
|
379 |
+
output_hidden_states=output_hidden_states,
|
380 |
+
return_dict=return_dict,
|
381 |
+
**kwargs
|
382 |
+
)
|
383 |
+
|
384 |
+
hidden_states = outputs[0]
|
385 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
386 |
+
|
387 |
+
loss, logits = None, None
|
388 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
389 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
390 |
+
if labels is not None:
|
391 |
+
if getattr(self, 'criterion', None) is None:
|
392 |
+
if fuse_linear_and_cross_entropy:
|
393 |
+
criterion = FusedLinearCrossEntropyLoss()
|
394 |
+
elif self.config.fuse_cross_entropy:
|
395 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
396 |
+
else:
|
397 |
+
criterion = nn.CrossEntropyLoss()
|
398 |
+
else:
|
399 |
+
criterion = self.criterion
|
400 |
+
labels = labels.to(hidden_states.device)
|
401 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
402 |
+
if fuse_linear_and_cross_entropy:
|
403 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
404 |
+
else:
|
405 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
406 |
+
|
407 |
+
if not return_dict:
|
408 |
+
output = (logits,) + outputs[1:]
|
409 |
+
return (loss,) + output if loss is not None else output
|
410 |
+
|
411 |
+
return CausalLMOutputWithPast(
|
412 |
+
loss=loss,
|
413 |
+
logits=logits,
|
414 |
+
past_key_values=outputs.past_key_values,
|
415 |
+
hidden_states=outputs.hidden_states,
|
416 |
+
attentions=outputs.attentions,
|
417 |
+
)
|
fla/models/lightnet/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.lightnet.configuration_lightnet import LightNetConfig
|
6 |
+
from fla.models.lightnet.modeling_lightnet import LightNetForCausalLM, LightNetModel
|
7 |
+
|
8 |
+
AutoConfig.register(LightNetConfig.model_type, LightNetConfig)
|
9 |
+
AutoModel.register(LightNetConfig, LightNetModel)
|
10 |
+
AutoModelForCausalLM.register(LightNetConfig, LightNetForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['LightNetConfig', 'LightNetForCausalLM', 'LightNetModel']
|
fla/models/lightnet/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (758 Bytes). View file
|
|
fla/models/lightnet/__pycache__/configuration_lightnet.cpython-311.pyc
ADDED
Binary file (3.77 kB). View file
|
|
fla/models/lightnet/__pycache__/modeling_lightnet.cpython-311.pyc
ADDED
Binary file (19.2 kB). View file
|
|
fla/models/lightnet/configuration_lightnet.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class LightNetConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'lightnet'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
num_hidden_layers: int = 24,
|
17 |
+
attn_mode: str = "chunk",
|
18 |
+
num_heads: Optional[int] = None,
|
19 |
+
expand_ratio: Optional[int] = 128,
|
20 |
+
use_short_conv: bool = False,
|
21 |
+
conv_size: int = 4,
|
22 |
+
hidden_ratio: Optional[int] = 4,
|
23 |
+
intermediate_size: Optional[int] = None,
|
24 |
+
hidden_act: str = "swish",
|
25 |
+
max_position_embeddings: int = 2048,
|
26 |
+
gate_low_rank_dim: int = 128,
|
27 |
+
elementwise_affine: Optional[bool] = True,
|
28 |
+
norm_eps: float = 1e-6,
|
29 |
+
attn: Optional[Dict] = None,
|
30 |
+
use_cache: bool = True,
|
31 |
+
pad_token_id: int = None,
|
32 |
+
bos_token_id: int = 1,
|
33 |
+
eos_token_id: int = 2,
|
34 |
+
tie_word_embeddings: bool = False,
|
35 |
+
initializer_range: float = 0.006,
|
36 |
+
fuse_norm: bool = True,
|
37 |
+
fuse_swiglu: bool = True,
|
38 |
+
fuse_cross_entropy: bool = True,
|
39 |
+
vocab_size: int = 32000,
|
40 |
+
**kwargs
|
41 |
+
):
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.num_hidden_layers = num_hidden_layers
|
44 |
+
self.attn_mode = attn_mode
|
45 |
+
self.num_heads = num_heads
|
46 |
+
self.expand_ratio = expand_ratio
|
47 |
+
self.use_short_conv = use_short_conv
|
48 |
+
self.conv_size = conv_size
|
49 |
+
self.max_position_embeddings = max_position_embeddings
|
50 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
51 |
+
self.hidden_ratio = hidden_ratio
|
52 |
+
self.intermediate_size = intermediate_size
|
53 |
+
self.hidden_act = hidden_act
|
54 |
+
self.elementwise_affine = elementwise_affine
|
55 |
+
self.norm_eps = norm_eps
|
56 |
+
self.attn = attn
|
57 |
+
self.use_cache = use_cache
|
58 |
+
self.initializer_range = initializer_range
|
59 |
+
|
60 |
+
self.fuse_norm = fuse_norm
|
61 |
+
self.fuse_swiglu = fuse_swiglu
|
62 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
63 |
+
self.vocab_size = vocab_size
|
64 |
+
|
65 |
+
if attn is not None:
|
66 |
+
if not isinstance(attn, Dict):
|
67 |
+
raise ValueError("attn must be a dictionary")
|
68 |
+
if 'layers' not in attn:
|
69 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
70 |
+
if 'num_heads' not in attn:
|
71 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
72 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
73 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
74 |
+
attn['window_size'] = attn.get('window_size', None)
|
75 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
76 |
+
|
77 |
+
super().__init__(
|
78 |
+
pad_token_id=pad_token_id,
|
79 |
+
bos_token_id=bos_token_id,
|
80 |
+
eos_token_id=eos_token_id,
|
81 |
+
tie_word_embeddings=tie_word_embeddings,
|
82 |
+
**kwargs,
|
83 |
+
)
|
fla/models/lightnet/modeling_lightnet.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.layers.lightnet import LightNetAttention
|
20 |
+
from fla.models.lightnet.configuration_lightnet import LightNetConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
23 |
+
from fla.modules import GatedMLP as LightNetMLP
|
24 |
+
from fla.modules import RMSNorm
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers.processing_utils import Unpack
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class LightNetBlock(nn.Module):
|
33 |
+
def __init__(self, config: LightNetConfig, layer_idx: int):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.config = config
|
37 |
+
self.layer_idx = layer_idx
|
38 |
+
|
39 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
40 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
41 |
+
self.attn = Attention(
|
42 |
+
hidden_size=config.hidden_size,
|
43 |
+
num_heads=config.attn['num_heads'],
|
44 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
45 |
+
qkv_bias=config.attn['qkv_bias'],
|
46 |
+
window_size=config.attn['window_size'],
|
47 |
+
max_position_embeddings=config.max_position_embeddings,
|
48 |
+
layer_idx=layer_idx
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
self.attn = LightNetAttention(
|
52 |
+
mode=config.attn_mode,
|
53 |
+
hidden_size=config.hidden_size,
|
54 |
+
num_heads=config.num_heads,
|
55 |
+
expand_ratio=config.expand_ratio,
|
56 |
+
use_short_conv=config.use_short_conv,
|
57 |
+
conv_size=config.conv_size,
|
58 |
+
gate_low_rank_dim=config.gate_low_rank_dim,
|
59 |
+
elementwise_affine=config.elementwise_affine,
|
60 |
+
norm_eps=config.norm_eps,
|
61 |
+
layer_idx=layer_idx
|
62 |
+
)
|
63 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
64 |
+
self.mlp = LightNetMLP(
|
65 |
+
hidden_size=config.hidden_size,
|
66 |
+
hidden_ratio=config.hidden_ratio,
|
67 |
+
intermediate_size=config.intermediate_size,
|
68 |
+
hidden_act=config.hidden_act,
|
69 |
+
fuse_swiglu=config.fuse_swiglu
|
70 |
+
)
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
hidden_states: torch.Tensor,
|
75 |
+
attention_mask: Optional[torch.Tensor] = None,
|
76 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
77 |
+
use_cache: Optional[bool] = False,
|
78 |
+
output_attentions: Optional[bool] = False,
|
79 |
+
**kwargs: Unpack[Dict]
|
80 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
81 |
+
residual = hidden_states
|
82 |
+
hidden_states = self.attn_norm(hidden_states)
|
83 |
+
hidden_states, attentions, past_key_values = self.attn(
|
84 |
+
hidden_states=hidden_states,
|
85 |
+
attention_mask=attention_mask,
|
86 |
+
past_key_values=past_key_values,
|
87 |
+
use_cache=use_cache,
|
88 |
+
output_attentions=output_attentions,
|
89 |
+
**kwargs
|
90 |
+
)
|
91 |
+
if self.config.fuse_norm:
|
92 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
93 |
+
else:
|
94 |
+
hidden_states = residual + hidden_states
|
95 |
+
residual = hidden_states
|
96 |
+
hidden_states = self.mlp_norm(hidden_states)
|
97 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
98 |
+
hidden_states = residual + hidden_states
|
99 |
+
|
100 |
+
outputs = (hidden_states, attentions, past_key_values)
|
101 |
+
|
102 |
+
return outputs
|
103 |
+
|
104 |
+
|
105 |
+
class LightNetPreTrainedModel(PreTrainedModel):
|
106 |
+
|
107 |
+
config_class = LightNetConfig
|
108 |
+
supports_gradient_checkpointing = True
|
109 |
+
_no_split_modules = ['LightNetBlock']
|
110 |
+
_supports_cache_class = True
|
111 |
+
|
112 |
+
def __init__(self, *inputs, **kwargs):
|
113 |
+
super().__init__(*inputs, **kwargs)
|
114 |
+
|
115 |
+
def _init_weights(
|
116 |
+
self,
|
117 |
+
module: nn.Module,
|
118 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
119 |
+
num_residuals_per_layer: int = 2,
|
120 |
+
):
|
121 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
122 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
123 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
124 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
125 |
+
if module.bias is not None:
|
126 |
+
nn.init.zeros_(module.bias)
|
127 |
+
elif isinstance(module, nn.Embedding):
|
128 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
129 |
+
elif hasattr(module, 'reset_parameters'):
|
130 |
+
module.reset_parameters()
|
131 |
+
|
132 |
+
if prenorm_residual_strategy is not None:
|
133 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
134 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
135 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
136 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
137 |
+
#
|
138 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
139 |
+
p = None
|
140 |
+
if hasattr(module, 'o_proj'):
|
141 |
+
p = module.o_proj.weight
|
142 |
+
elif hasattr(module, 'down_proj'):
|
143 |
+
p = module.down_proj.weight
|
144 |
+
if p is not None:
|
145 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
146 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
147 |
+
# We need to reinit p since this code could be called multiple times
|
148 |
+
# Having just p *= scale would repeatedly scale it down
|
149 |
+
if prenorm_residual_strategy == 'rescale':
|
150 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
151 |
+
with torch.no_grad():
|
152 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
153 |
+
elif prenorm_residual_strategy == 'zero':
|
154 |
+
nn.init.zeros_(p)
|
155 |
+
else:
|
156 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
157 |
+
|
158 |
+
|
159 |
+
class LightNetModel(LightNetPreTrainedModel):
|
160 |
+
|
161 |
+
def __init__(self, config: LightNetConfig):
|
162 |
+
super().__init__(config)
|
163 |
+
self.padding_idx = config.pad_token_id
|
164 |
+
self.vocab_size = config.vocab_size
|
165 |
+
|
166 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
167 |
+
self.layers = nn.ModuleList([LightNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
168 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
169 |
+
|
170 |
+
self.gradient_checkpointing = False
|
171 |
+
|
172 |
+
self.post_init()
|
173 |
+
|
174 |
+
def get_input_embeddings(self):
|
175 |
+
return self.embeddings
|
176 |
+
|
177 |
+
def set_input_embeddings(self, value):
|
178 |
+
self.embeddings = value
|
179 |
+
|
180 |
+
def forward(
|
181 |
+
self,
|
182 |
+
input_ids: Optional[torch.LongTensor] = None,
|
183 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
184 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
185 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
186 |
+
use_cache: Optional[bool] = None,
|
187 |
+
output_attentions: Optional[bool] = None,
|
188 |
+
output_hidden_states: Optional[bool] = None,
|
189 |
+
return_dict: Optional[bool] = None,
|
190 |
+
**kwargs: Unpack[Dict]
|
191 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
192 |
+
if output_attentions:
|
193 |
+
warnings.warn("`LightNetModel` does not `output_attentions` now, setting it to `False`.")
|
194 |
+
output_attentions = False
|
195 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
196 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
197 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
198 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
199 |
+
|
200 |
+
# retrieve input_ids and inputs_embeds
|
201 |
+
if input_ids is not None and inputs_embeds is not None:
|
202 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
203 |
+
if input_ids is None and inputs_embeds is None:
|
204 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
205 |
+
|
206 |
+
if inputs_embeds is None:
|
207 |
+
inputs_embeds = self.embeddings(input_ids)
|
208 |
+
hidden_states = inputs_embeds
|
209 |
+
|
210 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
211 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
212 |
+
|
213 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
214 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
215 |
+
use_cache = False
|
216 |
+
|
217 |
+
all_hidden_states = () if output_hidden_states else None
|
218 |
+
all_attns = () if output_attentions else None
|
219 |
+
|
220 |
+
for i, layer in enumerate(self.layers):
|
221 |
+
if output_hidden_states:
|
222 |
+
all_hidden_states += (hidden_states,)
|
223 |
+
|
224 |
+
if self.gradient_checkpointing and self.training:
|
225 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
226 |
+
layer.__call__,
|
227 |
+
hidden_states,
|
228 |
+
attention_mask,
|
229 |
+
past_key_values,
|
230 |
+
use_cache,
|
231 |
+
output_attentions,
|
232 |
+
**kwargs
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
hidden_states, attentions, past_key_values = layer(
|
236 |
+
hidden_states,
|
237 |
+
attention_mask=attention_mask,
|
238 |
+
past_key_values=past_key_values,
|
239 |
+
use_cache=use_cache,
|
240 |
+
output_attentions=output_attentions,
|
241 |
+
**kwargs
|
242 |
+
)
|
243 |
+
|
244 |
+
if output_attentions:
|
245 |
+
all_attns += (attentions,)
|
246 |
+
|
247 |
+
hidden_states = self.norm(hidden_states)
|
248 |
+
|
249 |
+
# add hidden states from the last decoder layer
|
250 |
+
if output_hidden_states:
|
251 |
+
all_hidden_states += (hidden_states,)
|
252 |
+
|
253 |
+
if not return_dict:
|
254 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
255 |
+
return BaseModelOutputWithPast(
|
256 |
+
last_hidden_state=hidden_states,
|
257 |
+
past_key_values=past_key_values,
|
258 |
+
hidden_states=all_hidden_states,
|
259 |
+
attentions=all_attns
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
class LightNetForCausalLM(LightNetPreTrainedModel, GenerationMixin):
|
264 |
+
|
265 |
+
_tied_weights_keys = ["lm_head.weight"]
|
266 |
+
|
267 |
+
def __init__(self, config):
|
268 |
+
super().__init__(config)
|
269 |
+
self.model = LightNetModel(config)
|
270 |
+
self.vocab_size = config.vocab_size
|
271 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
272 |
+
self.criterion = None
|
273 |
+
|
274 |
+
# Initialize weights and apply final processing
|
275 |
+
self.post_init()
|
276 |
+
|
277 |
+
def get_input_embeddings(self):
|
278 |
+
return self.model.embeddings
|
279 |
+
|
280 |
+
def set_input_embeddings(self, value):
|
281 |
+
self.model.embeddings = value
|
282 |
+
|
283 |
+
def get_output_embeddings(self):
|
284 |
+
return self.lm_head
|
285 |
+
|
286 |
+
def set_output_embeddings(self, new_embeddings):
|
287 |
+
self.lm_head = new_embeddings
|
288 |
+
|
289 |
+
def set_decoder(self, decoder):
|
290 |
+
self.model = decoder
|
291 |
+
|
292 |
+
def get_decoder(self):
|
293 |
+
return self.model
|
294 |
+
|
295 |
+
def generate(self, *args, **kwargs):
|
296 |
+
try:
|
297 |
+
return super().generate(*args, **kwargs)
|
298 |
+
except AttributeError as exception:
|
299 |
+
if 'past_key_values' in str(exception):
|
300 |
+
raise AttributeError(
|
301 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
302 |
+
f"which is not supported for {self.__class__.__name__}. "
|
303 |
+
f"Try another generation strategy instead. "
|
304 |
+
f"For the available generation strategies, check this doc: "
|
305 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
raise exception
|
309 |
+
|
310 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
311 |
+
def prepare_inputs_for_generation(
|
312 |
+
self,
|
313 |
+
input_ids: torch.LongTensor = None,
|
314 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
315 |
+
attention_mask: Optional[torch.Tensor] = None,
|
316 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
317 |
+
use_cache: bool = True,
|
318 |
+
logits_to_keep: Optional[int] = None,
|
319 |
+
**kwargs: Unpack[Dict]
|
320 |
+
):
|
321 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
322 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
323 |
+
input_ids = input_ids[:, -1:]
|
324 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
325 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
326 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
327 |
+
else:
|
328 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
329 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
330 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
331 |
+
# TODO: use `next_tokens` directly instead.
|
332 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
333 |
+
|
334 |
+
if logits_to_keep is not None:
|
335 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
336 |
+
|
337 |
+
model_inputs.update({
|
338 |
+
'past_key_values': past_key_values,
|
339 |
+
'use_cache': use_cache,
|
340 |
+
'attention_mask': attention_mask,
|
341 |
+
})
|
342 |
+
return model_inputs
|
343 |
+
|
344 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
345 |
+
def forward(
|
346 |
+
self,
|
347 |
+
input_ids: torch.LongTensor = None,
|
348 |
+
attention_mask: Optional[torch.Tensor] = None,
|
349 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
350 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
351 |
+
labels: Optional[torch.LongTensor] = None,
|
352 |
+
use_cache: Optional[bool] = None,
|
353 |
+
output_attentions: Optional[bool] = None,
|
354 |
+
output_hidden_states: Optional[bool] = None,
|
355 |
+
return_dict: Optional[bool] = None,
|
356 |
+
logits_to_keep: Optional[int] = 0,
|
357 |
+
**kwargs: Unpack[Dict]
|
358 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
359 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
360 |
+
output_hidden_states = (
|
361 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
362 |
+
)
|
363 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
364 |
+
|
365 |
+
outputs = self.model(
|
366 |
+
input_ids=input_ids,
|
367 |
+
attention_mask=attention_mask,
|
368 |
+
inputs_embeds=inputs_embeds,
|
369 |
+
past_key_values=past_key_values,
|
370 |
+
use_cache=use_cache,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
output_hidden_states=output_hidden_states,
|
373 |
+
return_dict=return_dict,
|
374 |
+
**kwargs
|
375 |
+
)
|
376 |
+
|
377 |
+
hidden_states = outputs[0]
|
378 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
379 |
+
|
380 |
+
loss, logits = None, None
|
381 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
382 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
383 |
+
if labels is not None:
|
384 |
+
if getattr(self, 'criterion', None) is None:
|
385 |
+
if fuse_linear_and_cross_entropy:
|
386 |
+
criterion = FusedLinearCrossEntropyLoss()
|
387 |
+
elif self.config.fuse_cross_entropy:
|
388 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
389 |
+
else:
|
390 |
+
criterion = nn.CrossEntropyLoss()
|
391 |
+
else:
|
392 |
+
criterion = self.criterion
|
393 |
+
labels = labels.to(hidden_states.device)
|
394 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
395 |
+
if fuse_linear_and_cross_entropy:
|
396 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
397 |
+
else:
|
398 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
399 |
+
|
400 |
+
if not return_dict:
|
401 |
+
output = (logits,) + outputs[1:]
|
402 |
+
return (loss,) + output if loss is not None else output
|
403 |
+
|
404 |
+
return CausalLMOutputWithPast(
|
405 |
+
loss=loss,
|
406 |
+
logits=logits,
|
407 |
+
past_key_values=outputs.past_key_values,
|
408 |
+
hidden_states=outputs.hidden_states,
|
409 |
+
attentions=outputs.attentions,
|
410 |
+
)
|
fla/models/linear_attn/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.linear_attn.configuration_linear_attn import LinearAttentionConfig
|
6 |
+
from fla.models.linear_attn.modeling_linear_attn import LinearAttentionForCausalLM, LinearAttentionModel
|
7 |
+
|
8 |
+
AutoConfig.register(LinearAttentionConfig.model_type, LinearAttentionConfig)
|
9 |
+
AutoModel.register(LinearAttentionConfig, LinearAttentionModel)
|
10 |
+
AutoModelForCausalLM.register(LinearAttentionConfig, LinearAttentionForCausalLM)
|
11 |
+
|
12 |
+
__all__ = ['LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel']
|
fla/models/linear_attn/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (796 Bytes). View file
|
|
fla/models/linear_attn/__pycache__/configuration_linear_attn.cpython-311.pyc
ADDED
Binary file (4.05 kB). View file
|
|
fla/models/linear_attn/__pycache__/modeling_linear_attn.cpython-311.pyc
ADDED
Binary file (19.4 kB). View file
|
|
fla/models/linear_attn/configuration_linear_attn.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class LinearAttentionConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'linear_attn'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
attn_mode: str = "fused_chunk",
|
16 |
+
hidden_size: int = 2048,
|
17 |
+
expand_k: int = 1,
|
18 |
+
expand_v: int = 1,
|
19 |
+
hidden_ratio: Optional[int] = 4,
|
20 |
+
intermediate_size: Optional[int] = None,
|
21 |
+
num_hidden_layers: int = 24,
|
22 |
+
num_heads: int = 4,
|
23 |
+
num_kv_heads: Optional[int] = None,
|
24 |
+
feature_map: str = "elementwise_product",
|
25 |
+
tie_feature_map_qk: bool = False,
|
26 |
+
norm_q: bool = False,
|
27 |
+
norm_k: bool = False,
|
28 |
+
norm_feature_map: bool = False,
|
29 |
+
hidden_act: str = "swish",
|
30 |
+
max_position_embeddings: int = 2048,
|
31 |
+
elementwise_affine: Optional[bool] = True,
|
32 |
+
norm_eps: float = 1e-6,
|
33 |
+
attn: Optional[Dict] = None,
|
34 |
+
use_cache: bool = True,
|
35 |
+
pad_token_id: int = None,
|
36 |
+
bos_token_id: int = 1,
|
37 |
+
eos_token_id: int = 2,
|
38 |
+
tie_word_embeddings: bool = False,
|
39 |
+
initializer_range: float = 0.006,
|
40 |
+
fuse_norm: bool = True,
|
41 |
+
fuse_swiglu: bool = True,
|
42 |
+
fuse_cross_entropy: bool = True,
|
43 |
+
vocab_size: int = 32000,
|
44 |
+
**kwargs
|
45 |
+
):
|
46 |
+
self.attn_mode = attn_mode
|
47 |
+
self.hidden_size = hidden_size
|
48 |
+
self.expand_k = expand_k
|
49 |
+
self.expand_v = expand_v
|
50 |
+
self.hidden_ratio = hidden_ratio
|
51 |
+
self.intermediate_size = intermediate_size
|
52 |
+
self.num_hidden_layers = num_hidden_layers
|
53 |
+
self.num_heads = num_heads
|
54 |
+
self.num_kv_heads = num_kv_heads
|
55 |
+
self.feature_map = feature_map
|
56 |
+
self.tie_feature_map_qk = tie_feature_map_qk
|
57 |
+
self.norm_q = norm_q
|
58 |
+
self.norm_k = norm_k
|
59 |
+
self.norm_feature_map = norm_feature_map
|
60 |
+
self.hidden_act = hidden_act
|
61 |
+
self.max_position_embeddings = max_position_embeddings
|
62 |
+
self.elementwise_affine = elementwise_affine
|
63 |
+
self.norm_eps = norm_eps
|
64 |
+
self.attn = attn
|
65 |
+
self.use_cache = use_cache
|
66 |
+
self.initializer_range = initializer_range
|
67 |
+
|
68 |
+
self.fuse_norm = fuse_norm
|
69 |
+
self.fuse_swiglu = fuse_swiglu
|
70 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
71 |
+
self.vocab_size = vocab_size
|
72 |
+
|
73 |
+
if attn is not None:
|
74 |
+
if not isinstance(attn, Dict):
|
75 |
+
raise ValueError("attn must be a dictionary")
|
76 |
+
if 'layers' not in attn:
|
77 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
78 |
+
if 'num_heads' not in attn:
|
79 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
80 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
81 |
+
attn['qkv_bias'] = attn.get('qkv_bias', False)
|
82 |
+
attn['window_size'] = attn.get('window_size', None)
|
83 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
84 |
+
|
85 |
+
super().__init__(
|
86 |
+
pad_token_id=pad_token_id,
|
87 |
+
bos_token_id=bos_token_id,
|
88 |
+
eos_token_id=eos_token_id,
|
89 |
+
tie_word_embeddings=tie_word_embeddings,
|
90 |
+
**kwargs,
|
91 |
+
)
|
fla/models/linear_attn/modeling_linear_attn.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
from transformers.utils import logging
|
16 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.layers.linear_attn import LinearAttention
|
20 |
+
from fla.models.linear_attn.configuration_linear_attn import LinearAttentionConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss
|
23 |
+
from fla.modules import GatedMLP as LinearAttentionMLP
|
24 |
+
from fla.modules import RMSNorm
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class LinearAttentionBlock(nn.Module):
|
30 |
+
def __init__(self, config: LinearAttentionConfig, layer_idx: int):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.config = config
|
34 |
+
self.layer_idx = layer_idx
|
35 |
+
|
36 |
+
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
37 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
38 |
+
self.attn = Attention(
|
39 |
+
hidden_size=config.hidden_size,
|
40 |
+
num_heads=config.attn['num_heads'],
|
41 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
42 |
+
qkv_bias=config.attn['qkv_bias'],
|
43 |
+
window_size=config.attn['window_size'],
|
44 |
+
rope_theta=config.attn['rope_theta'],
|
45 |
+
max_position_embeddings=config.max_position_embeddings,
|
46 |
+
layer_idx=layer_idx
|
47 |
+
)
|
48 |
+
else:
|
49 |
+
self.attn = LinearAttention(
|
50 |
+
mode=config.attn_mode,
|
51 |
+
hidden_size=config.hidden_size,
|
52 |
+
expand_k=config.expand_k,
|
53 |
+
expand_v=config.expand_v,
|
54 |
+
num_heads=config.num_heads,
|
55 |
+
num_kv_heads=config.num_kv_heads,
|
56 |
+
feature_map=config.feature_map,
|
57 |
+
tie_feature_map_qk=config.tie_feature_map_qk,
|
58 |
+
norm_q=config.norm_q,
|
59 |
+
norm_k=config.norm_k,
|
60 |
+
do_feature_map_norm=config.norm_feature_map,
|
61 |
+
elementwise_affine=config.elementwise_affine,
|
62 |
+
norm_eps=config.norm_eps,
|
63 |
+
layer_idx=layer_idx
|
64 |
+
)
|
65 |
+
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
66 |
+
self.mlp = LinearAttentionMLP(
|
67 |
+
hidden_size=config.hidden_size,
|
68 |
+
hidden_ratio=config.hidden_ratio,
|
69 |
+
intermediate_size=config.intermediate_size,
|
70 |
+
hidden_act=config.hidden_act,
|
71 |
+
fuse_swiglu=config.fuse_swiglu
|
72 |
+
)
|
73 |
+
|
74 |
+
def forward(
|
75 |
+
self,
|
76 |
+
hidden_states: torch.Tensor,
|
77 |
+
attention_mask: Optional[torch.Tensor] = None,
|
78 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
79 |
+
use_cache: Optional[bool] = False,
|
80 |
+
output_attentions: Optional[bool] = False,
|
81 |
+
**kwargs,
|
82 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
83 |
+
residual = hidden_states
|
84 |
+
# currently not supported
|
85 |
+
attentions, past_key_values = None, None
|
86 |
+
hidden_states = self.attn_norm(hidden_states)
|
87 |
+
hidden_states = self.attn(hidden_states=hidden_states, **kwargs)
|
88 |
+
if self.config.fuse_norm:
|
89 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
90 |
+
else:
|
91 |
+
hidden_states = residual + hidden_states
|
92 |
+
residual = hidden_states
|
93 |
+
hidden_states = self.mlp_norm(hidden_states)
|
94 |
+
hidden_states = self.mlp(hidden_states, **kwargs)
|
95 |
+
hidden_states = residual + hidden_states
|
96 |
+
|
97 |
+
outputs = (hidden_states, attentions, past_key_values)
|
98 |
+
|
99 |
+
return outputs
|
100 |
+
|
101 |
+
|
102 |
+
class LinearAttentionPreTrainedModel(PreTrainedModel):
|
103 |
+
|
104 |
+
config_class = LinearAttentionConfig
|
105 |
+
base_model_prefix = 'model'
|
106 |
+
supports_gradient_checkpointing = True
|
107 |
+
_no_split_modules = ['LinearAttentionBlock']
|
108 |
+
_supports_cache_class = True
|
109 |
+
|
110 |
+
def __init__(self, *inputs, **kwargs):
|
111 |
+
super().__init__(*inputs, **kwargs)
|
112 |
+
|
113 |
+
def _init_weights(
|
114 |
+
self,
|
115 |
+
module: nn.Module,
|
116 |
+
prenorm_residual_strategy: Optional[str] = 'rescale',
|
117 |
+
num_residuals_per_layer: int = 2,
|
118 |
+
):
|
119 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
120 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
121 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
122 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
123 |
+
if module.bias is not None:
|
124 |
+
nn.init.zeros_(module.bias)
|
125 |
+
elif isinstance(module, nn.Embedding):
|
126 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
127 |
+
elif hasattr(module, 'reset_parameters'):
|
128 |
+
module.reset_parameters()
|
129 |
+
|
130 |
+
if prenorm_residual_strategy is not None:
|
131 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
132 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
133 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
134 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
135 |
+
#
|
136 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
137 |
+
p = None
|
138 |
+
if hasattr(module, 'o_proj'):
|
139 |
+
p = module.o_proj.weight
|
140 |
+
elif hasattr(module, 'down_proj'):
|
141 |
+
p = module.down_proj.weight
|
142 |
+
if p is not None:
|
143 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
144 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
145 |
+
# We need to reinit p since this code could be called multiple times
|
146 |
+
# Having just p *= scale would repeatedly scale it down
|
147 |
+
if prenorm_residual_strategy == 'rescale':
|
148 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
149 |
+
with torch.no_grad():
|
150 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
151 |
+
elif prenorm_residual_strategy == 'zero':
|
152 |
+
nn.init.zeros_(p)
|
153 |
+
else:
|
154 |
+
raise ValueError(f"Invalid prenorm_residual_strategy: {prenorm_residual_strategy}")
|
155 |
+
|
156 |
+
|
157 |
+
class LinearAttentionModel(LinearAttentionPreTrainedModel):
|
158 |
+
|
159 |
+
def __init__(self, config: LinearAttentionConfig):
|
160 |
+
super().__init__(config)
|
161 |
+
self.padding_idx = config.pad_token_id
|
162 |
+
self.vocab_size = config.vocab_size
|
163 |
+
|
164 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
165 |
+
self.layers = nn.ModuleList([LinearAttentionBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
166 |
+
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
|
167 |
+
|
168 |
+
self.gradient_checkpointing = False
|
169 |
+
|
170 |
+
self.post_init()
|
171 |
+
|
172 |
+
def get_input_embeddings(self):
|
173 |
+
return self.embeddings
|
174 |
+
|
175 |
+
def set_input_embeddings(self, value):
|
176 |
+
self.embeddings = value
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
input_ids: Optional[torch.LongTensor] = None,
|
181 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
182 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
183 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
184 |
+
use_cache: Optional[bool] = None,
|
185 |
+
output_attentions: Optional[bool] = None,
|
186 |
+
output_hidden_states: Optional[bool] = None,
|
187 |
+
return_dict: Optional[bool] = None
|
188 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
189 |
+
if output_attentions:
|
190 |
+
warnings.warn(
|
191 |
+
"`LinearAttentionModel` does not support output attention weights now, "
|
192 |
+
"so `output_attentions` is set to `False`."
|
193 |
+
)
|
194 |
+
output_attentions = False
|
195 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
196 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
197 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
198 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
199 |
+
|
200 |
+
# retrieve input_ids and inputs_embeds
|
201 |
+
if input_ids is not None and inputs_embeds is not None:
|
202 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
203 |
+
if input_ids is None and inputs_embeds is None:
|
204 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
205 |
+
|
206 |
+
if inputs_embeds is None:
|
207 |
+
inputs_embeds = self.embeddings(input_ids)
|
208 |
+
hidden_states = inputs_embeds
|
209 |
+
|
210 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
211 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
212 |
+
|
213 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
214 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
215 |
+
use_cache = False
|
216 |
+
|
217 |
+
all_hidden_states = () if output_hidden_states else None
|
218 |
+
all_attns = () if output_attentions else None
|
219 |
+
|
220 |
+
for i, layer in enumerate(self.layers):
|
221 |
+
if output_hidden_states:
|
222 |
+
all_hidden_states += (hidden_states,)
|
223 |
+
|
224 |
+
if self.gradient_checkpointing and self.training:
|
225 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
226 |
+
layer.__call__,
|
227 |
+
hidden_states,
|
228 |
+
attention_mask,
|
229 |
+
past_key_values,
|
230 |
+
use_cache,
|
231 |
+
output_attentions,
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
hidden_states, attentions, past_key_values = layer(
|
235 |
+
hidden_states,
|
236 |
+
attention_mask=attention_mask,
|
237 |
+
past_key_values=past_key_values,
|
238 |
+
use_cache=use_cache,
|
239 |
+
output_attentions=output_attentions
|
240 |
+
)
|
241 |
+
|
242 |
+
if output_attentions:
|
243 |
+
all_attns += (attentions,)
|
244 |
+
|
245 |
+
hidden_states = self.norm(hidden_states)
|
246 |
+
|
247 |
+
# add hidden states from the last decoder layer
|
248 |
+
if output_hidden_states:
|
249 |
+
all_hidden_states += (hidden_states,)
|
250 |
+
|
251 |
+
if not return_dict:
|
252 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
253 |
+
return BaseModelOutputWithPast(
|
254 |
+
last_hidden_state=hidden_states,
|
255 |
+
past_key_values=past_key_values,
|
256 |
+
hidden_states=all_hidden_states,
|
257 |
+
attentions=all_attns
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
class LinearAttentionForCausalLM(LinearAttentionPreTrainedModel, GenerationMixin):
|
262 |
+
|
263 |
+
_tied_weights_keys = ["lm_head.weight"]
|
264 |
+
|
265 |
+
def __init__(self, config):
|
266 |
+
super().__init__(config)
|
267 |
+
self.model = LinearAttentionModel(config)
|
268 |
+
self.vocab_size = config.vocab_size
|
269 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
270 |
+
self.criterion = None
|
271 |
+
|
272 |
+
# Initialize weights and apply final processing
|
273 |
+
self.post_init()
|
274 |
+
|
275 |
+
def get_input_embeddings(self):
|
276 |
+
return self.model.embeddings
|
277 |
+
|
278 |
+
def set_input_embeddings(self, value):
|
279 |
+
self.model.embeddings = value
|
280 |
+
|
281 |
+
def get_output_embeddings(self):
|
282 |
+
return self.lm_head
|
283 |
+
|
284 |
+
def set_output_embeddings(self, new_embeddings):
|
285 |
+
self.lm_head = new_embeddings
|
286 |
+
|
287 |
+
def set_decoder(self, decoder):
|
288 |
+
self.model = decoder
|
289 |
+
|
290 |
+
def get_decoder(self):
|
291 |
+
return self.model
|
292 |
+
|
293 |
+
def generate(self, *args, **kwargs):
|
294 |
+
try:
|
295 |
+
return super().generate(*args, **kwargs)
|
296 |
+
except AttributeError as exception:
|
297 |
+
if 'past_key_values' in str(exception):
|
298 |
+
raise AttributeError(
|
299 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
300 |
+
f"which is not supported for {self.__class__.__name__}. "
|
301 |
+
f"Try another generation strategy instead. "
|
302 |
+
f"For the available generation strategies, check this doc: "
|
303 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
raise exception
|
307 |
+
|
308 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
309 |
+
def prepare_inputs_for_generation(
|
310 |
+
self,
|
311 |
+
input_ids: torch.LongTensor = None,
|
312 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
315 |
+
use_cache: bool = True,
|
316 |
+
logits_to_keep: Optional[int] = None,
|
317 |
+
**kwargs
|
318 |
+
):
|
319 |
+
# only last token for `inputs_ids` if the `past_key_values` is not empty.
|
320 |
+
if past_key_values is not None and len(past_key_values) > 0:
|
321 |
+
input_ids = input_ids[:, -1:]
|
322 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
323 |
+
if inputs_embeds is not None and len(past_key_values) == 0:
|
324 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
325 |
+
else:
|
326 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
327 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
328 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
329 |
+
# TODO: use `next_tokens` directly instead.
|
330 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
331 |
+
|
332 |
+
if logits_to_keep is not None:
|
333 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
334 |
+
|
335 |
+
model_inputs.update({
|
336 |
+
'past_key_values': past_key_values,
|
337 |
+
'use_cache': use_cache,
|
338 |
+
'attention_mask': attention_mask,
|
339 |
+
})
|
340 |
+
return model_inputs
|
341 |
+
|
342 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
343 |
+
def forward(
|
344 |
+
self,
|
345 |
+
input_ids: torch.LongTensor = None,
|
346 |
+
attention_mask: Optional[torch.Tensor] = None,
|
347 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
348 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
349 |
+
labels: Optional[torch.LongTensor] = None,
|
350 |
+
use_cache: Optional[bool] = None,
|
351 |
+
output_attentions: Optional[bool] = None,
|
352 |
+
output_hidden_states: Optional[bool] = None,
|
353 |
+
return_dict: Optional[bool] = None,
|
354 |
+
logits_to_keep: Optional[int] = 0
|
355 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
356 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
357 |
+
output_hidden_states = (
|
358 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
359 |
+
)
|
360 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
361 |
+
|
362 |
+
outputs = self.model(
|
363 |
+
input_ids=input_ids,
|
364 |
+
attention_mask=attention_mask,
|
365 |
+
inputs_embeds=inputs_embeds,
|
366 |
+
past_key_values=past_key_values,
|
367 |
+
use_cache=use_cache,
|
368 |
+
output_attentions=output_attentions,
|
369 |
+
output_hidden_states=output_hidden_states,
|
370 |
+
return_dict=return_dict
|
371 |
+
)
|
372 |
+
|
373 |
+
hidden_states = outputs[0]
|
374 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
375 |
+
|
376 |
+
loss, logits = None, None
|
377 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
378 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
379 |
+
if labels is not None:
|
380 |
+
if getattr(self, 'criterion', None) is None:
|
381 |
+
if fuse_linear_and_cross_entropy:
|
382 |
+
criterion = FusedLinearCrossEntropyLoss()
|
383 |
+
elif self.config.fuse_cross_entropy:
|
384 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
385 |
+
else:
|
386 |
+
criterion = nn.CrossEntropyLoss()
|
387 |
+
else:
|
388 |
+
criterion = self.criterion
|
389 |
+
labels = labels.to(hidden_states.device)
|
390 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
391 |
+
if fuse_linear_and_cross_entropy:
|
392 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
393 |
+
else:
|
394 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
395 |
+
|
396 |
+
if not return_dict:
|
397 |
+
output = (logits,) + outputs[1:]
|
398 |
+
return (loss,) + output if loss is not None else output
|
399 |
+
|
400 |
+
return CausalLMOutputWithPast(
|
401 |
+
loss=loss,
|
402 |
+
logits=logits,
|
403 |
+
past_key_values=outputs.past_key_values,
|
404 |
+
hidden_states=outputs.hidden_states,
|
405 |
+
attentions=outputs.attentions,
|
406 |
+
)
|
fla/models/mamba/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.mamba.configuration_mamba import MambaConfig
|
6 |
+
from fla.models.mamba.modeling_mamba import MambaBlock, MambaForCausalLM, MambaModel
|
7 |
+
|
8 |
+
AutoConfig.register(MambaConfig.model_type, MambaConfig, True)
|
9 |
+
AutoModel.register(MambaConfig, MambaModel, True)
|
10 |
+
AutoModelForCausalLM.register(MambaConfig, MambaForCausalLM, True)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['MambaConfig', 'MambaForCausalLM', 'MambaModel', 'MambaBlock']
|
fla/models/mamba/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (779 Bytes). View file
|
|
fla/models/mamba/configuration_mamba.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""MAMBA configuration"""
|
16 |
+
|
17 |
+
import math
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
|
21 |
+
|
22 |
+
class MambaConfig(PretrainedConfig):
|
23 |
+
"""
|
24 |
+
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
|
25 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
26 |
+
defaults will yield a similar configuration to that of the MAMBA
|
27 |
+
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
|
28 |
+
|
29 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
30 |
+
documentation from [`PretrainedConfig`] for more information.
|
31 |
+
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vocab_size (`int`, *optional*):
|
35 |
+
Vocabulary size of the Mamba model.
|
36 |
+
hidden_size (`int`, *optional*):
|
37 |
+
Dimensionality of the embeddings and hidden states. Default: 2048.
|
38 |
+
state_size (`int`, *optional*):
|
39 |
+
Shape of the state space latents. Default: 16.
|
40 |
+
num_hidden_layers (`int`, *optional*):
|
41 |
+
Number of hidden layers in the model. Default: 48.
|
42 |
+
layer_norm_epsilon (`float`, *optional*):
|
43 |
+
The epsilon to use in the layer normalization layers. Default: 1e-5.
|
44 |
+
pad_token_id (`int`, *optional*):
|
45 |
+
Padding token id. Default: 0.
|
46 |
+
bos_token_id (`int`, *optional*):
|
47 |
+
The id of the beginning of sentence token in the vocabulary. Default: 0.
|
48 |
+
eos_token_id (`int`, *optional*):
|
49 |
+
The id of the end of sentence token in the vocabulary. Default: 0.
|
50 |
+
expand (`int`, *optional*):
|
51 |
+
Expanding factor used to determine the intermediate size. Default: 2.
|
52 |
+
conv_kernel (`int`, *optional*):
|
53 |
+
Size of the convolution kernel. Default: 4.
|
54 |
+
use_bias (`bool`, *optional*):
|
55 |
+
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block. Default: `False`.
|
56 |
+
use_conv_bias (`bool`, *optional*):
|
57 |
+
Whether or not to use bias in the convolution layer of the mixer block. Default: `True`.
|
58 |
+
hidden_act (`str`, *optional*):
|
59 |
+
The non-linear activation function (function or string) in the decoder. Default: `"silu"`.
|
60 |
+
initializer_range (`float`, *optional*):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Default: 0.1.
|
62 |
+
residual_in_fp32 (`bool`, *optional*):
|
63 |
+
Whether or not residuals should be in `float32`.
|
64 |
+
If set to `False` residuals will keep the same `dtype` as the rest of the model. Default: `True`.
|
65 |
+
time_step_rank (`Union[int,str]`, *optional*):
|
66 |
+
Rank of the the discretization projection matrix.
|
67 |
+
`"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`. Default: `"auto"`.
|
68 |
+
time_step_scale (`float`, *optional*):
|
69 |
+
Scale used used to scale `dt_proj.bias`. Default: 1.0.
|
70 |
+
time_step_min (`float`, *optional*):
|
71 |
+
Minimum `time_step` used to bound `dt_proj.bias`. Default: 0.001.
|
72 |
+
time_step_max (`float`, *optional*):
|
73 |
+
Maximum `time_step` used to bound `dt_proj.bias`. Default: 0.1.
|
74 |
+
time_step_init_scheme (`float`, *optional*):
|
75 |
+
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`. Default: `"random"`.
|
76 |
+
time_step_floor (`float`, *optional*):
|
77 |
+
Minimum clamping value of the `dt_proj.bias` layer initialization. Default: 0.0001.
|
78 |
+
window_size (`int`, *optional*):
|
79 |
+
The window size used for sliding window attention. Default: 2048.
|
80 |
+
rescale_prenorm_residual (`bool`, *optional*):
|
81 |
+
Whether or not to rescale `out_proj` weights when initializing. Default: `False`.
|
82 |
+
use_cache (`bool`, *optional*):
|
83 |
+
Whether or not the cache should be used. Default: `True`.
|
84 |
+
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
```python
|
89 |
+
>>> from transformers import MambaConfig, MambaModel
|
90 |
+
|
91 |
+
>>> # Initializing a Mamba configuration
|
92 |
+
>>> configuration = MambaConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model (with random weights) from the configuration
|
95 |
+
>>> model = MambaModel(configuration)
|
96 |
+
|
97 |
+
>>> # Accessing the model configuration
|
98 |
+
>>> configuration = model.config
|
99 |
+
```"""
|
100 |
+
|
101 |
+
model_type = "mamba"
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
vocab_size: int = 32000,
|
106 |
+
hidden_size: int = 2048,
|
107 |
+
state_size: int = 16,
|
108 |
+
num_hidden_layers: int = 48,
|
109 |
+
layer_norm_epsilon=1e-5,
|
110 |
+
pad_token_id: int = 0,
|
111 |
+
bos_token_id: int = 1,
|
112 |
+
eos_token_id: int = 2,
|
113 |
+
expand: int = 2,
|
114 |
+
conv_kernel: int = 4,
|
115 |
+
use_bias: bool = False,
|
116 |
+
use_conv_bias: bool = True,
|
117 |
+
hidden_act: str = "silu",
|
118 |
+
initializer_range: str = 0.1,
|
119 |
+
residual_in_fp32: bool = False,
|
120 |
+
time_step_rank: str = "auto",
|
121 |
+
time_step_scale: float = 1.0,
|
122 |
+
time_step_min: float = 0.001,
|
123 |
+
time_step_max: float = 0.1,
|
124 |
+
time_step_init_scheme: str = "random",
|
125 |
+
time_step_floor: float = 1e-4,
|
126 |
+
rescale_prenorm_residual: bool = False,
|
127 |
+
use_cache: bool = True,
|
128 |
+
fuse_norm: bool = True,
|
129 |
+
fuse_cross_entropy: bool = True,
|
130 |
+
tie_word_embeddings: bool = False,
|
131 |
+
**kwargs,
|
132 |
+
):
|
133 |
+
self.vocab_size = vocab_size
|
134 |
+
self.hidden_size = hidden_size
|
135 |
+
self.state_size = state_size
|
136 |
+
self.num_hidden_layers = num_hidden_layers
|
137 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
138 |
+
self.conv_kernel = conv_kernel
|
139 |
+
self.expand = expand
|
140 |
+
self.intermediate_size = int(expand * self.hidden_size)
|
141 |
+
self.bos_token_id = bos_token_id
|
142 |
+
self.eos_token_id = eos_token_id
|
143 |
+
self.pad_token_id = pad_token_id
|
144 |
+
self.use_bias = use_bias
|
145 |
+
self.use_conv_bias = use_conv_bias
|
146 |
+
self.hidden_act = hidden_act
|
147 |
+
self.initializer_range = initializer_range
|
148 |
+
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
149 |
+
self.time_step_scale = time_step_scale
|
150 |
+
self.time_step_min = time_step_min
|
151 |
+
self.time_step_max = time_step_max
|
152 |
+
self.time_step_init_scheme = time_step_init_scheme
|
153 |
+
self.time_step_floor = time_step_floor
|
154 |
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
155 |
+
self.residual_in_fp32 = residual_in_fp32
|
156 |
+
self.use_cache = use_cache
|
157 |
+
self.fuse_norm = fuse_norm
|
158 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
159 |
+
|
160 |
+
super().__init__(
|
161 |
+
bos_token_id=bos_token_id,
|
162 |
+
eos_token_id=eos_token_id,
|
163 |
+
pad_token_id=pad_token_id,
|
164 |
+
tie_word_embeddings=tie_word_embeddings,
|
165 |
+
**kwargs
|
166 |
+
)
|
fla/models/mamba/modeling_mamba.py
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch MAMBA model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import warnings
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.configuration_utils import PretrainedConfig
|
27 |
+
from transformers.generation import GenerationMixin
|
28 |
+
from transformers.modeling_utils import PreTrainedModel
|
29 |
+
from transformers.utils import ModelOutput, logging
|
30 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
31 |
+
|
32 |
+
from fla.models.mamba.configuration_mamba import MambaConfig
|
33 |
+
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
with warnings.catch_warnings():
|
39 |
+
warnings.simplefilter('ignore')
|
40 |
+
try:
|
41 |
+
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
42 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
43 |
+
except ImportError:
|
44 |
+
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
45 |
+
|
46 |
+
try:
|
47 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
48 |
+
except ImportError:
|
49 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
50 |
+
is_fast_path_available = all((
|
51 |
+
selective_state_update,
|
52 |
+
selective_scan_fn,
|
53 |
+
causal_conv1d_fn,
|
54 |
+
causal_conv1d_update,
|
55 |
+
mamba_inner_fn
|
56 |
+
))
|
57 |
+
|
58 |
+
|
59 |
+
class MambaCache:
|
60 |
+
"""
|
61 |
+
Cache for mamba model which does not have attention mechanism and key value states.
|
62 |
+
|
63 |
+
Arguments:
|
64 |
+
config (`PretrainedConfig):
|
65 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
66 |
+
batch_size (`int`):
|
67 |
+
The batch size with which the model will be used. Note that a new instance must be instantiated if a
|
68 |
+
smaller batch size is used.
|
69 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float16`):
|
70 |
+
The default `dtype` to use when initializing the layer.
|
71 |
+
device (`torch.device` or `str`, *optional*):
|
72 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
73 |
+
|
74 |
+
Attributes:
|
75 |
+
dtype: (`torch.dtype`):
|
76 |
+
The default `dtype` used to initializing the cache.
|
77 |
+
intermediate_size: (`int`):
|
78 |
+
Model's intermediate_size taken from config.
|
79 |
+
ssm_state_size: (`int`):
|
80 |
+
Model's state_size taken from config.
|
81 |
+
conv_kernel_size: (`int`):
|
82 |
+
Model's convolution kernel size taken from config
|
83 |
+
conv_states: (`torch.Tensor`):
|
84 |
+
A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states.
|
85 |
+
ssm_states: (`torch.Tensor`):
|
86 |
+
A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states
|
87 |
+
|
88 |
+
Example:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache
|
92 |
+
|
93 |
+
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
|
94 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
|
95 |
+
|
96 |
+
>>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt")
|
97 |
+
|
98 |
+
>>> # Prepare a cache class and pass it to model's forward
|
99 |
+
>>> past_key_values = MambaCache(config=model.config, batch_size=1, device=model.device, dtype=model.dtype)
|
100 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
101 |
+
>>> outputs.past_key_values
|
102 |
+
MambaCache()
|
103 |
+
```
|
104 |
+
"""
|
105 |
+
|
106 |
+
# TODO (joao): remove `=None` in non-optional arguments in v4.46. Remove from `OBJECTS_TO_IGNORE` as well.
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
config: PretrainedConfig,
|
110 |
+
batch_size: int = None,
|
111 |
+
dtype: torch.dtype = torch.float16,
|
112 |
+
device: Optional[Union[torch.device, str]] = None,
|
113 |
+
max_batch_size: Optional[int] = None,
|
114 |
+
):
|
115 |
+
if max_batch_size is not None:
|
116 |
+
logger.warning_once(
|
117 |
+
f"The 'max_batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in "
|
118 |
+
"v4.46. Use the more precisely named 'batch_size' argument instead."
|
119 |
+
)
|
120 |
+
self.dtype = dtype
|
121 |
+
self.batch_size = batch_size or max_batch_size
|
122 |
+
self.intermediate_size = config.intermediate_size
|
123 |
+
self.ssm_state_size = config.state_size
|
124 |
+
self.conv_kernel_size = config.conv_kernel
|
125 |
+
|
126 |
+
self.conv_states: torch.Tensor = torch.zeros(
|
127 |
+
config.num_hidden_layers,
|
128 |
+
self.batch_size,
|
129 |
+
self.intermediate_size,
|
130 |
+
self.conv_kernel_size,
|
131 |
+
device=device,
|
132 |
+
dtype=dtype,
|
133 |
+
)
|
134 |
+
self.ssm_states: torch.Tensor = torch.zeros(
|
135 |
+
config.num_hidden_layers,
|
136 |
+
self.batch_size,
|
137 |
+
self.intermediate_size,
|
138 |
+
self.ssm_state_size,
|
139 |
+
device=device,
|
140 |
+
dtype=dtype,
|
141 |
+
)
|
142 |
+
|
143 |
+
torch._dynamo.mark_static_address(self.conv_states)
|
144 |
+
torch._dynamo.mark_static_address(self.ssm_states)
|
145 |
+
|
146 |
+
def update_conv_state(
|
147 |
+
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
148 |
+
) -> torch.Tensor:
|
149 |
+
conv_state = self.conv_states[layer_idx]
|
150 |
+
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
|
151 |
+
|
152 |
+
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
153 |
+
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
154 |
+
self.conv_states[layer_idx].zero_()
|
155 |
+
self.conv_states[layer_idx] += conv_state
|
156 |
+
return self.conv_states[layer_idx]
|
157 |
+
|
158 |
+
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
|
159 |
+
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
|
160 |
+
return self.ssm_states[layer_idx]
|
161 |
+
|
162 |
+
def reset(self):
|
163 |
+
self.conv_states.zero_()
|
164 |
+
self.ssm_states.zero_()
|
165 |
+
|
166 |
+
|
167 |
+
class MambaMixer(nn.Module):
|
168 |
+
"""
|
169 |
+
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
170 |
+
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
171 |
+
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
172 |
+
and is why Mamba is called **selective** state spaces)
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(self, config: MambaConfig, layer_idx: int):
|
176 |
+
super().__init__()
|
177 |
+
self.config = config
|
178 |
+
self.hidden_size = config.hidden_size
|
179 |
+
self.ssm_state_size = config.state_size
|
180 |
+
self.conv_kernel_size = config.conv_kernel
|
181 |
+
self.intermediate_size = config.intermediate_size
|
182 |
+
self.time_step_rank = int(config.time_step_rank)
|
183 |
+
self.layer_idx = layer_idx
|
184 |
+
self.use_conv_bias = config.use_conv_bias
|
185 |
+
self.conv1d = nn.Conv1d(
|
186 |
+
in_channels=self.intermediate_size,
|
187 |
+
out_channels=self.intermediate_size,
|
188 |
+
bias=config.use_conv_bias,
|
189 |
+
kernel_size=config.conv_kernel,
|
190 |
+
groups=self.intermediate_size,
|
191 |
+
padding=config.conv_kernel - 1,
|
192 |
+
)
|
193 |
+
|
194 |
+
self.activation = config.hidden_act
|
195 |
+
self.act = ACT2FN[config.hidden_act]
|
196 |
+
|
197 |
+
# projection of the input hidden states
|
198 |
+
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
|
199 |
+
# selective projection used to make dt, B and C input dependant
|
200 |
+
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
201 |
+
# time step projection (discretization)
|
202 |
+
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
203 |
+
|
204 |
+
# S4D real initialization. These are not discretized!
|
205 |
+
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
206 |
+
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
207 |
+
A = A.expand(self.intermediate_size, -1).contiguous()
|
208 |
+
|
209 |
+
self.A_log = nn.Parameter(torch.log(A))
|
210 |
+
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
211 |
+
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
212 |
+
self.use_bias = config.use_bias
|
213 |
+
|
214 |
+
if not is_fast_path_available:
|
215 |
+
logger.warning_once(
|
216 |
+
"The fast path is not available because on of "
|
217 |
+
"`(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
|
218 |
+
" is None. Falling back to the naive implementation. "
|
219 |
+
"To install follow https://github.com/state-spaces/mamba/#installation and"
|
220 |
+
" https://github.com/Dao-AILab/causal-conv1d"
|
221 |
+
)
|
222 |
+
|
223 |
+
def cuda_kernels_forward(
|
224 |
+
self,
|
225 |
+
hidden_states: torch.Tensor,
|
226 |
+
cache_params: Optional[MambaCache] = None,
|
227 |
+
cache_position: Optional[torch.LongTensor] = None,
|
228 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
229 |
+
):
|
230 |
+
# 1. Gated MLP's linear projection
|
231 |
+
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
232 |
+
|
233 |
+
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
|
234 |
+
contextualized_states = mamba_inner_fn(
|
235 |
+
projected_states,
|
236 |
+
self.conv1d.weight,
|
237 |
+
self.conv1d.bias if self.use_conv_bias else None,
|
238 |
+
self.x_proj.weight,
|
239 |
+
self.dt_proj.weight,
|
240 |
+
self.out_proj.weight,
|
241 |
+
self.out_proj.bias.float() if self.use_bias else None,
|
242 |
+
-torch.exp(self.A_log.float()),
|
243 |
+
None, # input-dependent B
|
244 |
+
None, # input-dependent C
|
245 |
+
self.D.float(),
|
246 |
+
delta_bias=self.dt_proj.bias.float(),
|
247 |
+
delta_softplus=True,
|
248 |
+
)
|
249 |
+
|
250 |
+
else:
|
251 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
252 |
+
|
253 |
+
if attention_mask is not None:
|
254 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
255 |
+
|
256 |
+
# 2. Convolution sequence transformation
|
257 |
+
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
258 |
+
if cache_params is not None and cache_position[0] > 0:
|
259 |
+
hidden_states = causal_conv1d_update(
|
260 |
+
hidden_states.squeeze(-1),
|
261 |
+
cache_params.conv_states[self.layer_idx],
|
262 |
+
conv_weights,
|
263 |
+
self.conv1d.bias,
|
264 |
+
self.activation,
|
265 |
+
)
|
266 |
+
hidden_states = hidden_states.unsqueeze(-1)
|
267 |
+
else:
|
268 |
+
if cache_params is not None:
|
269 |
+
conv_states = nn.functional.pad(
|
270 |
+
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
271 |
+
)
|
272 |
+
cache_params.update_conv_state(self.layer_idx, conv_states, cache_position)
|
273 |
+
hidden_states = causal_conv1d_fn(
|
274 |
+
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
275 |
+
)
|
276 |
+
|
277 |
+
if attention_mask is not None:
|
278 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
279 |
+
|
280 |
+
# 3. State Space Model sequence transformation
|
281 |
+
# 3.a. input varying initialization of time_step, B and C
|
282 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
283 |
+
time_step, B, C = torch.split(
|
284 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
285 |
+
)
|
286 |
+
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
|
287 |
+
|
288 |
+
A = -torch.exp(self.A_log.float())
|
289 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
290 |
+
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
|
291 |
+
if cache_params is not None and cache_position[0] > 0:
|
292 |
+
scan_outputs = selective_state_update(
|
293 |
+
cache_params.ssm_states[self.layer_idx],
|
294 |
+
hidden_states[..., 0],
|
295 |
+
discrete_time_step[..., 0],
|
296 |
+
A,
|
297 |
+
B[:, 0],
|
298 |
+
C[:, 0],
|
299 |
+
self.D,
|
300 |
+
gate[..., 0],
|
301 |
+
time_proj_bias,
|
302 |
+
dt_softplus=True,
|
303 |
+
).unsqueeze(-1)
|
304 |
+
else:
|
305 |
+
scan_outputs, ssm_state = selective_scan_fn(
|
306 |
+
hidden_states,
|
307 |
+
discrete_time_step,
|
308 |
+
A,
|
309 |
+
B.transpose(1, 2),
|
310 |
+
C.transpose(1, 2),
|
311 |
+
self.D.float(),
|
312 |
+
gate,
|
313 |
+
time_proj_bias,
|
314 |
+
delta_softplus=True,
|
315 |
+
return_last_state=True,
|
316 |
+
)
|
317 |
+
if ssm_state is not None and cache_params is not None:
|
318 |
+
cache_params.update_ssm_state(self.layer_idx, ssm_state)
|
319 |
+
|
320 |
+
# 4. Final linear projection
|
321 |
+
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
322 |
+
return contextualized_states
|
323 |
+
|
324 |
+
def slow_forward(
|
325 |
+
self,
|
326 |
+
input_states,
|
327 |
+
cache_params: Optional[MambaCache] = None,
|
328 |
+
cache_position: Optional[torch.LongTensor] = None,
|
329 |
+
attention_mask: Optional[torch.LongTensor] = None
|
330 |
+
):
|
331 |
+
batch_size, seq_len, _ = input_states.shape
|
332 |
+
dtype = input_states.dtype
|
333 |
+
# 1. Gated MLP's linear projection
|
334 |
+
# [batch, 2 * intermediate_size, seq_len]
|
335 |
+
projected_states = self.in_proj(input_states).transpose(1, 2)
|
336 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
337 |
+
|
338 |
+
if attention_mask is not None:
|
339 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
340 |
+
|
341 |
+
# 2. Convolution sequence transformation
|
342 |
+
if cache_params is not None:
|
343 |
+
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
344 |
+
ssm_state = ssm_state.to(hidden_states.device)
|
345 |
+
# use `cache_position.shape[0]` to check whether we are in prefill
|
346 |
+
# stage, it's equivalent to check `cache_position[0] == 0`, which
|
347 |
+
# breaks dynamo fullgraph constraints
|
348 |
+
if cache_position.shape[0] == self.conv_kernel_size:
|
349 |
+
conv_state = nn.functional.pad(
|
350 |
+
hidden_states,
|
351 |
+
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
352 |
+
)
|
353 |
+
|
354 |
+
cache_params.update_conv_state(self.layer_idx, conv_state, cache_position)
|
355 |
+
# [batch, intermediate_size, seq_len]
|
356 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
|
357 |
+
else:
|
358 |
+
conv_state = cache_params.update_conv_state(self.layer_idx, hidden_states, cache_position)
|
359 |
+
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
360 |
+
if self.use_conv_bias:
|
361 |
+
hidden_states += self.conv1d.bias
|
362 |
+
# [batch, intermediate_size, 1] : decoding
|
363 |
+
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)
|
364 |
+
else:
|
365 |
+
ssm_state = torch.zeros(
|
366 |
+
(batch_size, self.intermediate_size, self.ssm_state_size),
|
367 |
+
device=hidden_states.device, dtype=dtype
|
368 |
+
)
|
369 |
+
# [batch, intermediate_size, seq_len]
|
370 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
|
371 |
+
|
372 |
+
if attention_mask is not None:
|
373 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
374 |
+
|
375 |
+
# 3. State Space Model sequence transformation
|
376 |
+
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
377 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
378 |
+
time_step, B, C = torch.split(
|
379 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
380 |
+
)
|
381 |
+
# [batch, seq_len, intermediate_size]
|
382 |
+
discrete_time_step = self.dt_proj(time_step)
|
383 |
+
# [batch, intermediate_size, seq_len]
|
384 |
+
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2)
|
385 |
+
|
386 |
+
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
387 |
+
# [intermediate_size, ssm_state_size]
|
388 |
+
A = -torch.exp(self.A_log.float())
|
389 |
+
# [batch, intermediate_size, seq_len, ssm_state_size]
|
390 |
+
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None])
|
391 |
+
# [batch, intermediate_size, seq_len, ssm_state_size]
|
392 |
+
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()
|
393 |
+
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
394 |
+
|
395 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
396 |
+
scan_outputs = []
|
397 |
+
for i in range(seq_len):
|
398 |
+
# [batch, intermediade_size, ssm_state]
|
399 |
+
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]
|
400 |
+
# [batch, intermediade_size, 1]
|
401 |
+
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))
|
402 |
+
scan_outputs.append(scan_output[:, :, 0])
|
403 |
+
# [batch, seq_len, intermediade_size]
|
404 |
+
scan_output = torch.stack(scan_outputs, dim=-1)
|
405 |
+
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
406 |
+
scan_output = (scan_output * self.act(gate))
|
407 |
+
|
408 |
+
if cache_params is not None:
|
409 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
410 |
+
|
411 |
+
# 4. Final linear projection
|
412 |
+
# [batch, seq_len, hidden_size]
|
413 |
+
contextualized_states = self.out_proj(scan_output.transpose(1, 2))
|
414 |
+
return contextualized_states
|
415 |
+
# fmt: on
|
416 |
+
|
417 |
+
def forward(
|
418 |
+
self,
|
419 |
+
hidden_states,
|
420 |
+
cache_params: Optional[MambaCache] = None,
|
421 |
+
cache_position: Optional[torch.LongTensor] = None,
|
422 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
423 |
+
):
|
424 |
+
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type:
|
425 |
+
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
|
426 |
+
return self.slow_forward(hidden_states, cache_params, cache_position, attention_mask)
|
427 |
+
|
428 |
+
|
429 |
+
class MambaBlock(nn.Module):
|
430 |
+
def __init__(self, config, layer_idx):
|
431 |
+
super().__init__()
|
432 |
+
self.config = config
|
433 |
+
self.layer_idx = layer_idx
|
434 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
435 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
436 |
+
self.mixer = MambaMixer(config, layer_idx=layer_idx)
|
437 |
+
|
438 |
+
def forward(
|
439 |
+
self,
|
440 |
+
hidden_states,
|
441 |
+
cache_params: Optional[MambaCache] = None,
|
442 |
+
cache_position: Optional[torch.LongTensor] = None,
|
443 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
444 |
+
):
|
445 |
+
residual = hidden_states
|
446 |
+
hidden_states = self.norm(hidden_states)
|
447 |
+
if self.residual_in_fp32:
|
448 |
+
residual = residual.to(torch.float32)
|
449 |
+
|
450 |
+
hidden_states = self.mixer(
|
451 |
+
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
452 |
+
)
|
453 |
+
hidden_states = residual + hidden_states
|
454 |
+
if self.residual_in_fp32:
|
455 |
+
hidden_states = hidden_states.to(dtype=self.norm.weight.dtype)
|
456 |
+
return hidden_states
|
457 |
+
|
458 |
+
|
459 |
+
class MambaPreTrainedModel(PreTrainedModel):
|
460 |
+
"""
|
461 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
462 |
+
models.
|
463 |
+
"""
|
464 |
+
|
465 |
+
config_class = MambaConfig
|
466 |
+
base_model_prefix = "backbone"
|
467 |
+
_no_split_modules = ["MambaBlock", "MambaMixer"]
|
468 |
+
supports_gradient_checkpointing = True
|
469 |
+
_is_stateful = True
|
470 |
+
|
471 |
+
def _init_weights(self, module):
|
472 |
+
"""Initialize the weights."""
|
473 |
+
if isinstance(module, nn.Linear):
|
474 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
475 |
+
if module.bias is not None:
|
476 |
+
if not getattr(module.bias, "_no_reinit", False):
|
477 |
+
nn.init.zeros_(module.bias)
|
478 |
+
elif isinstance(module, MambaMixer):
|
479 |
+
module.A_log._no_weight_decay = True
|
480 |
+
module.D._no_weight_decay = True
|
481 |
+
|
482 |
+
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
|
483 |
+
if self.config.time_step_init_scheme == "constant":
|
484 |
+
nn.init.constant_(module.dt_proj.weight, dt_init_std)
|
485 |
+
elif self.config.time_step_init_scheme == "random":
|
486 |
+
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
|
487 |
+
|
488 |
+
dt = torch.exp(
|
489 |
+
torch.rand(self.config.intermediate_size)
|
490 |
+
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
491 |
+
+ math.log(self.config.time_step_min)
|
492 |
+
).clamp(min=self.config.time_step_floor)
|
493 |
+
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
494 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
495 |
+
with torch.no_grad():
|
496 |
+
module.dt_proj.bias.data = nn.Parameter(inv_dt.to(module.dt_proj.bias.device))
|
497 |
+
module.dt_proj.bias._no_reinit = True
|
498 |
+
elif isinstance(module, nn.Embedding):
|
499 |
+
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
500 |
+
elif hasattr(module, 'reset_parameters'):
|
501 |
+
module.reset_parameters()
|
502 |
+
|
503 |
+
if self.config.rescale_prenorm_residual:
|
504 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
505 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
506 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
507 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
508 |
+
#
|
509 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
510 |
+
for name, p in module.named_parameters():
|
511 |
+
if name in ["out_proj.weight"]:
|
512 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
513 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
514 |
+
# We need to reinit p since this code could be called multiple times
|
515 |
+
# Having just p *= scale would repeatedly scale it down
|
516 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
517 |
+
with torch.no_grad():
|
518 |
+
p /= math.sqrt(self.config.num_hidden_layers)
|
519 |
+
|
520 |
+
|
521 |
+
@dataclass
|
522 |
+
class MambaOutput(ModelOutput):
|
523 |
+
"""
|
524 |
+
Class for the MAMBA model outputs.
|
525 |
+
|
526 |
+
Args:
|
527 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
528 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
529 |
+
cache_params (`MambaCache`):
|
530 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
531 |
+
avoid providing the old `input_ids`.
|
532 |
+
|
533 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
534 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
|
535 |
+
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
536 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
537 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
538 |
+
|
539 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
540 |
+
"""
|
541 |
+
|
542 |
+
last_hidden_state: Optional[torch.FloatTensor] = None
|
543 |
+
cache_params: Optional[MambaCache] = None
|
544 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
545 |
+
|
546 |
+
|
547 |
+
@dataclass
|
548 |
+
class MambaCausalLMOutput(ModelOutput):
|
549 |
+
"""
|
550 |
+
Base class for causal language model (or autoregressive) outputs.
|
551 |
+
|
552 |
+
Args:
|
553 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
554 |
+
Language modeling loss (for next-token prediction).
|
555 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
556 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
557 |
+
cache_params (`MambaCache`):
|
558 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
559 |
+
avoid providing the old `input_ids`.
|
560 |
+
|
561 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
562 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
|
563 |
+
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
564 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
565 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
566 |
+
|
567 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
568 |
+
"""
|
569 |
+
|
570 |
+
loss: Optional[torch.FloatTensor] = None
|
571 |
+
logits: Optional[torch.FloatTensor] = None
|
572 |
+
cache_params: Optional[MambaCache] = None
|
573 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
574 |
+
|
575 |
+
|
576 |
+
class MambaModel(MambaPreTrainedModel):
|
577 |
+
def __init__(self, config):
|
578 |
+
super().__init__(config)
|
579 |
+
|
580 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
581 |
+
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
582 |
+
|
583 |
+
self.gradient_checkpointing = False
|
584 |
+
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
585 |
+
# Initialize weights and apply final processing
|
586 |
+
self._register_load_state_dict_pre_hook(self.load_hook)
|
587 |
+
self.post_init()
|
588 |
+
|
589 |
+
def load_hook(self, state_dict, prefix, *args):
|
590 |
+
for k in state_dict:
|
591 |
+
if "embedding." in k:
|
592 |
+
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
593 |
+
break
|
594 |
+
|
595 |
+
def get_input_embeddings(self):
|
596 |
+
return self.embeddings
|
597 |
+
|
598 |
+
def set_input_embeddings(self, new_embeddings):
|
599 |
+
self.embeddings = new_embeddings
|
600 |
+
|
601 |
+
def forward(
|
602 |
+
self,
|
603 |
+
input_ids: Optional[torch.LongTensor] = None,
|
604 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
605 |
+
cache_params: Optional[MambaCache] = None,
|
606 |
+
use_cache: Optional[bool] = None,
|
607 |
+
output_hidden_states: Optional[bool] = None,
|
608 |
+
return_dict: Optional[bool] = None,
|
609 |
+
cache_position: Optional[torch.LongTensor] = None,
|
610 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
611 |
+
) -> Union[Tuple, MambaOutput]:
|
612 |
+
output_hidden_states = (
|
613 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
614 |
+
)
|
615 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
616 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
617 |
+
|
618 |
+
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
619 |
+
raise ValueError(
|
620 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
621 |
+
)
|
622 |
+
|
623 |
+
if inputs_embeds is None:
|
624 |
+
inputs_embeds = self.embeddings(input_ids)
|
625 |
+
|
626 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
627 |
+
use_cache = False
|
628 |
+
|
629 |
+
if use_cache:
|
630 |
+
if cache_params is None:
|
631 |
+
cache_params = MambaCache(
|
632 |
+
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
633 |
+
)
|
634 |
+
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
635 |
+
elif cache_position is None:
|
636 |
+
# cases when we do manual forward instead of using `model.generate` which will initiate
|
637 |
+
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
638 |
+
# hack to conjecture the current cache position
|
639 |
+
raise ValueError(
|
640 |
+
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
641 |
+
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
642 |
+
"be initialized for you automatically"
|
643 |
+
)
|
644 |
+
else:
|
645 |
+
cache_params = None
|
646 |
+
|
647 |
+
hidden_states = inputs_embeds
|
648 |
+
all_hidden_states = () if output_hidden_states else None
|
649 |
+
for mixer_block in self.layers:
|
650 |
+
if self.gradient_checkpointing and self.training:
|
651 |
+
hidden_states = self._gradient_checkpointing_func(
|
652 |
+
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
hidden_states = mixer_block(
|
656 |
+
hidden_states,
|
657 |
+
cache_params=cache_params,
|
658 |
+
cache_position=cache_position,
|
659 |
+
attention_mask=attention_mask,
|
660 |
+
)
|
661 |
+
|
662 |
+
if output_hidden_states:
|
663 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
664 |
+
|
665 |
+
hidden_states = self.norm_f(hidden_states)
|
666 |
+
|
667 |
+
if output_hidden_states:
|
668 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
669 |
+
|
670 |
+
if not return_dict:
|
671 |
+
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
672 |
+
|
673 |
+
return MambaOutput(
|
674 |
+
last_hidden_state=hidden_states,
|
675 |
+
cache_params=cache_params if use_cache else None,
|
676 |
+
hidden_states=all_hidden_states,
|
677 |
+
)
|
678 |
+
|
679 |
+
|
680 |
+
class MambaForCausalLM(MambaPreTrainedModel, GenerationMixin):
|
681 |
+
|
682 |
+
_tied_weights_keys = ["lm_head.weight"]
|
683 |
+
|
684 |
+
def __init__(self, config):
|
685 |
+
super().__init__(config)
|
686 |
+
self.backbone = MambaModel(config)
|
687 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
688 |
+
self.criterion = None
|
689 |
+
|
690 |
+
# Initialize weights and apply final processing
|
691 |
+
self.post_init()
|
692 |
+
|
693 |
+
def get_output_embeddings(self):
|
694 |
+
return self.lm_head
|
695 |
+
|
696 |
+
def set_output_embeddings(self, new_embeddings):
|
697 |
+
self.lm_head = new_embeddings
|
698 |
+
|
699 |
+
def get_input_embeddings(self):
|
700 |
+
return self.backbone.get_input_embeddings()
|
701 |
+
|
702 |
+
def set_input_embeddings(self, new_embeddings):
|
703 |
+
return self.backbone.set_input_embeddings(new_embeddings)
|
704 |
+
|
705 |
+
def _update_model_kwargs_for_generation(
|
706 |
+
self, outputs: ModelOutput,
|
707 |
+
model_kwargs: Dict[str, Any],
|
708 |
+
num_new_tokens: int = 1,
|
709 |
+
**kwargs
|
710 |
+
) -> Dict[str, Any]:
|
711 |
+
model_kwargs["cache_params"] = outputs.get("cache_params", None)
|
712 |
+
if (
|
713 |
+
model_kwargs.get("use_cache", True)
|
714 |
+
and "cache_position" in model_kwargs
|
715 |
+
and model_kwargs["cache_position"] is not None
|
716 |
+
):
|
717 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
718 |
+
|
719 |
+
if "attention_mask" in model_kwargs:
|
720 |
+
attention_mask = model_kwargs["attention_mask"]
|
721 |
+
model_kwargs["attention_mask"] = torch.cat(
|
722 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
723 |
+
)
|
724 |
+
|
725 |
+
return model_kwargs
|
726 |
+
|
727 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
728 |
+
def prepare_inputs_for_generation(
|
729 |
+
self,
|
730 |
+
input_ids,
|
731 |
+
inputs_embeds=None,
|
732 |
+
use_cache=None,
|
733 |
+
cache_params: Optional[MambaCache] = None,
|
734 |
+
cache_position: Optional[torch.LongTensor] = None,
|
735 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
736 |
+
logits_to_keep: Optional[int] = None,
|
737 |
+
**kwargs,
|
738 |
+
):
|
739 |
+
if use_cache:
|
740 |
+
# `cache_position` should have been initialized in `generate`
|
741 |
+
if cache_position is None:
|
742 |
+
raise ValueError(
|
743 |
+
"`cache_position` should not be None as it should have been initialized in "
|
744 |
+
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
745 |
+
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
746 |
+
)
|
747 |
+
if cache_position[0] > 0:
|
748 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
749 |
+
|
750 |
+
if attention_mask is not None:
|
751 |
+
attention_mask = None
|
752 |
+
|
753 |
+
else:
|
754 |
+
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
755 |
+
# considering padding will be applied when input length is shorter, and truncation
|
756 |
+
# will be applied when it is longer, so it will be equivalent to always have it match
|
757 |
+
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
758 |
+
cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device)
|
759 |
+
|
760 |
+
if inputs_embeds is not None and cache_params is None:
|
761 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
762 |
+
else:
|
763 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
764 |
+
|
765 |
+
if logits_to_keep is not None:
|
766 |
+
model_inputs['logits_to_keep'] = logits_to_keep
|
767 |
+
|
768 |
+
model_inputs.update({
|
769 |
+
'cache_params': cache_params,
|
770 |
+
'use_cache': use_cache,
|
771 |
+
'cache_position': cache_position,
|
772 |
+
'attention_mask': attention_mask,
|
773 |
+
'logits_to_keep': logits_to_keep,
|
774 |
+
})
|
775 |
+
return model_inputs
|
776 |
+
|
777 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
778 |
+
def forward(
|
779 |
+
self,
|
780 |
+
input_ids: Optional[torch.LongTensor] = None,
|
781 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
782 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
783 |
+
cache_params: Optional[MambaCache] = None,
|
784 |
+
labels: Optional[torch.LongTensor] = None,
|
785 |
+
output_hidden_states: Optional[bool] = None,
|
786 |
+
return_dict: Optional[bool] = None,
|
787 |
+
use_cache: Optional[bool] = None,
|
788 |
+
cache_position: Optional[torch.Tensor] = None,
|
789 |
+
logits_to_keep: Optional[int] = 0,
|
790 |
+
**kwargs, # for now we need this for generation
|
791 |
+
) -> Union[Tuple, MambaCausalLMOutput]:
|
792 |
+
r"""
|
793 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
794 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
795 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
796 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
797 |
+
"""
|
798 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
799 |
+
|
800 |
+
mamba_outputs = self.backbone(
|
801 |
+
input_ids,
|
802 |
+
cache_params=cache_params,
|
803 |
+
inputs_embeds=inputs_embeds,
|
804 |
+
output_hidden_states=output_hidden_states,
|
805 |
+
return_dict=return_dict,
|
806 |
+
use_cache=use_cache,
|
807 |
+
cache_position=cache_position,
|
808 |
+
attention_mask=attention_mask,
|
809 |
+
)
|
810 |
+
hidden_states = mamba_outputs[0]
|
811 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
812 |
+
|
813 |
+
loss, logits = None, None
|
814 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
815 |
+
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
|
816 |
+
if labels is not None:
|
817 |
+
if getattr(self, 'criterion', None) is None:
|
818 |
+
if fuse_linear_and_cross_entropy:
|
819 |
+
criterion = FusedLinearCrossEntropyLoss()
|
820 |
+
elif self.config.fuse_cross_entropy:
|
821 |
+
criterion = FusedCrossEntropyLoss(inplace_backward=True)
|
822 |
+
else:
|
823 |
+
criterion = nn.CrossEntropyLoss()
|
824 |
+
else:
|
825 |
+
criterion = self.criterion
|
826 |
+
# Enable model parallelism
|
827 |
+
labels = labels.to(hidden_states.device)
|
828 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
|
829 |
+
if fuse_linear_and_cross_entropy:
|
830 |
+
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
|
831 |
+
else:
|
832 |
+
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
|
833 |
+
|
834 |
+
if not return_dict:
|
835 |
+
output = (logits,) + mamba_outputs[1:]
|
836 |
+
return (loss,) + output if loss is not None else output
|
837 |
+
|
838 |
+
return MambaCausalLMOutput(
|
839 |
+
loss=loss,
|
840 |
+
logits=logits,
|
841 |
+
cache_params=mamba_outputs.cache_params,
|
842 |
+
hidden_states=mamba_outputs.hidden_states,
|
843 |
+
)
|
fla/models/mamba2/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.mamba2.configuration_mamba2 import Mamba2Config
|
6 |
+
from fla.models.mamba2.modeling_mamba2 import Mamba2ForCausalLM, Mamba2Model
|
7 |
+
|
8 |
+
AutoConfig.register(Mamba2Config.model_type, Mamba2Config, True)
|
9 |
+
AutoModel.register(Mamba2Config, Mamba2Model, True)
|
10 |
+
AutoModelForCausalLM.register(Mamba2Config, Mamba2ForCausalLM, True)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['Mamba2Config', 'Mamba2ForCausalLM', 'Mamba2Model']
|
fla/models/mamba2/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (754 Bytes). View file
|
|
fla/models/mamba2/__pycache__/configuration_mamba2.cpython-311.pyc
ADDED
Binary file (7.71 kB). View file
|
|
fla/models/mamba2/__pycache__/modeling_mamba2.cpython-311.pyc
ADDED
Binary file (53.5 kB). View file
|
|
fla/models/mamba2/configuration_mamba2.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""MAMBA2 configuration"""
|
15 |
+
|
16 |
+
import math
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
|
20 |
+
|
21 |
+
class Mamba2Config(PretrainedConfig):
|
22 |
+
"""
|
23 |
+
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2
|
24 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
25 |
+
defaults will yield a similar configuration to that of the MAMBA2
|
26 |
+
[state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture.
|
27 |
+
|
28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
29 |
+
documentation from [`PretrainedConfig`] for more information.
|
30 |
+
|
31 |
+
|
32 |
+
Args:
|
33 |
+
num_heads (`int`, *optional*, defaults to 64):
|
34 |
+
Number of heads for the evolution matrices of mamba 2.
|
35 |
+
head_dim (`int`, *optional*, defaults to 64):
|
36 |
+
Dimension of each head.
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32768):
|
38 |
+
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`Mamba2Model`].
|
40 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
41 |
+
Dimensionality of the embeddings and hidden states.
|
42 |
+
state_size (`int`, *optional*, defaults to 128): shape of the state space latents.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
44 |
+
Number of hidden layers in the model.
|
45 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
46 |
+
The epsilon to use in the layer normalization layers.
|
47 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
48 |
+
Padding token id.
|
49 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
50 |
+
The id of the beginning of sentence token in the vocabulary.
|
51 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
52 |
+
The id of the end of sentence token in the vocabulary.
|
53 |
+
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
54 |
+
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
55 |
+
n_groups (`int`, *optional*, defaults to 1):
|
56 |
+
Number of groups for the evolution matrices of mamba 2.
|
57 |
+
use_bias (`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
59 |
+
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to use bias in the convolution layer of the mixer block.
|
61 |
+
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
initializer_range (`float`, *optional*, defaults to 0.1):
|
64 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
+
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not residuals should be in `float32`.
|
67 |
+
If set to `False` residuals will keep the same `dtype` as the rest of the model
|
68 |
+
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
69 |
+
Rank of the discretization projection matrix.
|
70 |
+
`"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
71 |
+
time_step_min (`float`, *optional*, defaults to 0.001):
|
72 |
+
Minimum `time_step` used to bound `dt_proj.bias`.
|
73 |
+
time_step_max (`float`, *optional*, defaults to 0.1):
|
74 |
+
Maximum `time_step` used to bound `dt_proj.bias`.
|
75 |
+
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
76 |
+
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
77 |
+
time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`):
|
78 |
+
Accepted range of time step values.
|
79 |
+
rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not to rescale `out_proj` weights when initializing.
|
81 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
82 |
+
Whether or not the cache should be used.
|
83 |
+
rms_norm (`bool`, *optional*, defaults to `True`):
|
84 |
+
Whether to use RMS norm or not.
|
85 |
+
chunk_size (`int`, *optional*, defaults to 256):
|
86 |
+
Size of the chunks that will comprise the sequence.
|
87 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
88 |
+
Whether to tie word embeddings or not.
|
89 |
+
"""
|
90 |
+
|
91 |
+
model_type = "mamba2"
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
num_heads: int = 64,
|
96 |
+
head_dim: int = 64,
|
97 |
+
vocab_size: int = 32000,
|
98 |
+
hidden_size: int = 2048,
|
99 |
+
state_size: int = 128,
|
100 |
+
num_hidden_layers: int = 48,
|
101 |
+
layer_norm_epsilon: float = 1e-5,
|
102 |
+
pad_token_id: int = 0,
|
103 |
+
bos_token_id: int = 1,
|
104 |
+
eos_token_id: int = 2,
|
105 |
+
expand: int = 2,
|
106 |
+
conv_kernel: int = 4,
|
107 |
+
n_groups: int = 1,
|
108 |
+
use_bias: bool = False,
|
109 |
+
use_conv_bias: bool = True,
|
110 |
+
hidden_act: str = "silu",
|
111 |
+
initializer_range: float = 0.1,
|
112 |
+
residual_in_fp32: bool = True,
|
113 |
+
time_step_rank: str = "auto",
|
114 |
+
time_step_min: float = 0.001,
|
115 |
+
time_step_max: float = 0.1,
|
116 |
+
time_step_floor: float = 1e-4,
|
117 |
+
time_step_limit=(0.0, float("inf")),
|
118 |
+
rescale_prenorm_residual: bool = True,
|
119 |
+
use_cache: bool = True,
|
120 |
+
rms_norm: bool = True,
|
121 |
+
chunk_size: int = 256,
|
122 |
+
fuse_norm: bool = True,
|
123 |
+
fuse_cross_entropy: bool = True,
|
124 |
+
tie_word_embeddings: bool = False,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
self.vocab_size = vocab_size
|
128 |
+
self.hidden_size = hidden_size
|
129 |
+
self.state_size = state_size
|
130 |
+
self.num_hidden_layers = num_hidden_layers
|
131 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
132 |
+
self.conv_kernel = conv_kernel
|
133 |
+
self.expand = expand
|
134 |
+
|
135 |
+
self.bos_token_id = bos_token_id
|
136 |
+
self.eos_token_id = eos_token_id
|
137 |
+
self.pad_token_id = pad_token_id
|
138 |
+
self.use_bias = use_bias
|
139 |
+
self.use_conv_bias = use_conv_bias
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.initializer_range = initializer_range
|
142 |
+
self.time_step_rank = (
|
143 |
+
math.ceil(self.hidden_size / 16)
|
144 |
+
if time_step_rank == "auto"
|
145 |
+
else time_step_rank
|
146 |
+
)
|
147 |
+
self.time_step_min = time_step_min
|
148 |
+
self.time_step_max = time_step_max
|
149 |
+
self.time_step_floor = time_step_floor
|
150 |
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
151 |
+
self.residual_in_fp32 = residual_in_fp32
|
152 |
+
self.use_cache = use_cache
|
153 |
+
self.n_groups = n_groups
|
154 |
+
self.num_heads = num_heads
|
155 |
+
self.head_dim = head_dim
|
156 |
+
self.rms_norm = rms_norm
|
157 |
+
self.state_size = state_size
|
158 |
+
self.chunk_size = chunk_size
|
159 |
+
self.time_step_limit = time_step_limit
|
160 |
+
self.fuse_norm = fuse_norm
|
161 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
162 |
+
self.tie_word_embeddings = tie_word_embeddings
|
163 |
+
|
164 |
+
super().__init__(
|
165 |
+
bos_token_id=bos_token_id,
|
166 |
+
eos_token_id=eos_token_id,
|
167 |
+
pad_token_id=pad_token_id,
|
168 |
+
tie_word_embeddings=tie_word_embeddings,
|
169 |
+
**kwargs,
|
170 |
+
)
|