zaydzuhri's picture
Add files using upload-large-folder tool
ee2cdd2 verified
raw
history blame
17.5 kB
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.utils.deprecation import deprecate_kwarg
from fla.layers.bitattn import BitAttention
from fla.models.bitnet.configuration_bitnet import BitNetConfig
from fla.models.utils import Cache
from fla.modules import FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu
from fla.modules.fused_bitlinear import FusedBitLinear
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
logger = logging.get_logger(__name__)
class BitNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish',
fuse_swiglu: bool = True
) -> BitNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.fuse_swiglu = fuse_swiglu
if hidden_act != 'swish':
raise ValueError(f'Unsupported hidden_act: {hidden_act}')
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def forward(
self,
x: torch.Tensor,
**kwargs: Unpack[Any]
) -> torch.Tensor:
gate, y = self.gate_proj(x), self.up_proj(x)
return self.down_proj(swiglu(gate, y))
class BitNetBlock(nn.Module):
def __init__(self, config: BitNetConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attn_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
self.attn = BitAttention(
hidden_size=config.hidden_size,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
window_size=config.window_size,
rope_theta=config.rope_theta,
max_position_embeddings=config.max_position_embeddings,
layer_idx=layer_idx
)
self.mlp_norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
self.mlp = BitNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
fuse_swiglu=config.fuse_swiglu
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs: Unpack[Any]
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs
)
if self.config.fuse_norm:
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
else:
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.mlp_norm(hidden_states)
hidden_states = self.mlp(hidden_states, **kwargs)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attentions,)
if use_cache:
outputs += (past_key_values,)
return outputs
class BitNetPreTrainedModel(PreTrainedModel):
config_class = BitNetConfig
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_no_split_modules = ['BitNetBlock']
_supports_cache_class = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = False,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d, FusedBitLinear)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
elif hasattr(module, 'reset_parameters'):
module.reset_parameters()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
p = None
if hasattr(module, 'o_proj'):
p = module.o_proj.weight
elif hasattr(module, 'down_proj'):
p = module.down_proj.weight
if p is not None:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class BitNetModel(BitNetPreTrainedModel):
def __init__(
self,
config: BitNetConfig
) -> BitNetModel:
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([BitNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = (RMSNorm if config.fuse_norm else nn.RMSNorm)(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[Any]
) -> Union[Tuple, CausalLMOutputWithPast]:
if output_attentions:
warnings.warn(
"`BitNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
)
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if use_cache and not isinstance(past_key_values, Cache):
past_key_values = Cache.from_legacy_cache(past_key_values)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
next_cache = None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
output_attentions,
use_cache,
**kwargs
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs
)
hidden_states = layer_outputs[0]
if use_cache:
next_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class BitNetForCausalLM(BitNetPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = BitNetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.criterion = None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: bool = True,
logits_to_keep: Optional[int] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is not empty.
if past_key_values is not None and len(past_key_values) > 0:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and len(past_key_values) == 0:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
if logits_to_keep is not None:
model_inputs['logits_to_keep'] = logits_to_keep
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': use_cache,
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Optional[int] = 0,
**kwargs: Unpack[Any]
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
hidden_states = outputs[0]
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
loss, logits = None, None
if not fuse_linear_and_cross_entropy or labels is None:
logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
if labels is not None:
if getattr(self, 'criterion', None) is None:
if fuse_linear_and_cross_entropy:
criterion = FusedLinearCrossEntropyLoss()
elif self.config.fuse_cross_entropy:
criterion = FusedCrossEntropyLoss(inplace_backward=True)
else:
criterion = nn.CrossEntropyLoss()
else:
criterion = self.criterion
labels = labels.to(hidden_states.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
if fuse_linear_and_cross_entropy:
loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
else:
loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)