zaydzuhri's picture
Add files using upload-large-folder tool
4135502 verified
raw
history blame
8.18 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
# ["You Only Scan Once: Efficient Multi-dimension Sequential Modeling with LightNet"](https://arxiv.org/abs/2405.21022)
from __future__ import annotations
from typing import TYPE_CHECKING, Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from fla.modules import FusedRMSNormGated, ShortConvolution
from fla.modules.fused_norm_gate import rms_norm_swish_gate_linear
from fla.ops.gla import chunk_gla, fused_recurrent_gla
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
from fla.models.utils import Cache
class LightNetAttention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
gate_low_rank_dim: int = 128,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None
) -> LightNetAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
if expand_ratio is None and num_heads is not None:
expand_ratio = hidden_size // num_heads
elif expand_ratio is not None and num_heads is None:
num_heads = hidden_size // expand_ratio
elif expand_ratio is None and num_heads is None:
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.key_dim = int(self.num_heads * self.expand_ratio)
self.value_dim = hidden_size
self.gate_low_rank_dim = gate_low_rank_dim
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_f_dim = self.expand_ratio
self.head_i_dim = self.hidden_size // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None)
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation=None)
self.g_proj = nn.Sequential(
nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
nn.Linear(gate_low_rank_dim, hidden_size, bias=False)
)
self.g_norm = FusedRMSNormGated(
hidden_size=hidden_size,
elementwise_affine=elementwise_affine,
eps=norm_eps
)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[Dict]
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
cu_seqlens = kwargs.get('cu_seqlens', None)
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
q, conv_state_q = self.q_conv1d(
x=self.q_proj(hidden_states),
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
k, conv_state_k = self.k_conv1d(
x=self.k_proj(hidden_states),
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
v, conv_state_v = self.v_conv1d(
x=self.v_proj(hidden_states),
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
q = F.silu(q)
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k))
v = rearrange(v, '... (h d) -> ... h d', d=self.head_i_dim)
# TODO: this 2 steps took huge amount of time, which should be optimized
z = k.float().logcumsumexp(1)
if cu_seqlens is not None:
raise NotImplementedError("LightNet does not support variable-length sequences for now.")
k, g = torch.exp(k - z).to(k.dtype), (torch.cat((z[:, :1], z[:, :-1]), 1) - z).to(k.dtype)
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(
q=q,
k=k,
v=v,
gk=g,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False
)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(
q=q,
k=k,
v=v,
g=g,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False
)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[1]
)
o = rms_norm_swish_gate_linear(
rearrange(o, 'b t h d -> b t (h d)'),
self.g_proj(hidden_states),
self.g_norm.weight,
self.g_norm.bias,
self.o_proj.weight,
self.o_proj.bias
)
return o, None, past_key_values
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_i_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size