|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from fla.modules import FusedRMSNormGated, ShortConvolution |
|
from fla.modules.fused_norm_gate import rms_norm_swish_gate_linear |
|
from fla.ops.gla import chunk_gla, fused_recurrent_gla |
|
|
|
if TYPE_CHECKING: |
|
from transformers.processing_utils import Unpack |
|
|
|
from fla.models.utils import Cache |
|
|
|
|
|
class LightNetAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
mode: str = 'chunk', |
|
hidden_size: int = 1024, |
|
num_heads: Optional[int] = None, |
|
expand_ratio: Optional[int] = 128, |
|
use_short_conv: bool = False, |
|
conv_size: int = 4, |
|
conv_bias: bool = False, |
|
gate_low_rank_dim: int = 128, |
|
elementwise_affine: Optional[bool] = True, |
|
norm_eps: float = 1e-5, |
|
layer_idx: int = None |
|
) -> LightNetAttention: |
|
super().__init__() |
|
|
|
self.mode = mode |
|
self.hidden_size = hidden_size |
|
|
|
if expand_ratio is None and num_heads is not None: |
|
expand_ratio = hidden_size // num_heads |
|
elif expand_ratio is not None and num_heads is None: |
|
num_heads = hidden_size // expand_ratio |
|
elif expand_ratio is None and num_heads is None: |
|
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.") |
|
self.num_heads = num_heads |
|
self.expand_ratio = expand_ratio |
|
|
|
self.use_short_conv = use_short_conv |
|
self.conv_size = conv_size |
|
self.conv_bias = conv_bias |
|
|
|
self.key_dim = int(self.num_heads * self.expand_ratio) |
|
self.value_dim = hidden_size |
|
self.gate_low_rank_dim = gate_low_rank_dim |
|
self.layer_idx = layer_idx |
|
|
|
assert mode in ['chunk', 'fused_chunk'], f"Not suppoerted mode `{mode}`." |
|
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" |
|
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" |
|
|
|
self.head_f_dim = self.expand_ratio |
|
self.head_i_dim = self.hidden_size // num_heads |
|
|
|
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False) |
|
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False) |
|
|
|
if use_short_conv: |
|
self.conv_size = conv_size |
|
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None) |
|
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation=None) |
|
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation=None) |
|
|
|
self.g_proj = nn.Sequential( |
|
nn.Linear(hidden_size, gate_low_rank_dim, bias=False), |
|
nn.Linear(gate_low_rank_dim, hidden_size, bias=False) |
|
) |
|
self.g_norm = FusedRMSNormGated( |
|
hidden_size=hidden_size, |
|
elementwise_affine=elementwise_affine, |
|
eps=norm_eps |
|
) |
|
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs: Unpack[Dict] |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
|
|
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode |
|
|
|
last_state = None |
|
if past_key_values is not None and len(past_key_values) > self.layer_idx: |
|
last_state = past_key_values[self.layer_idx] |
|
|
|
cu_seqlens = kwargs.get('cu_seqlens', None) |
|
if self.use_short_conv: |
|
conv_state_q, conv_state_k, conv_state_v = None, None, None |
|
if last_state is not None: |
|
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state'] |
|
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None |
|
q, conv_state_q = self.q_conv1d( |
|
x=self.q_proj(hidden_states), |
|
mask=conv_mask, |
|
cache=conv_state_q, |
|
output_final_state=use_cache, |
|
cu_seqlens=cu_seqlens |
|
) |
|
k, conv_state_k = self.k_conv1d( |
|
x=self.k_proj(hidden_states), |
|
mask=conv_mask, |
|
cache=conv_state_k, |
|
output_final_state=use_cache, |
|
cu_seqlens=cu_seqlens |
|
) |
|
v, conv_state_v = self.v_conv1d( |
|
x=self.v_proj(hidden_states), |
|
mask=conv_mask, |
|
cache=conv_state_v, |
|
output_final_state=use_cache, |
|
cu_seqlens=cu_seqlens |
|
) |
|
else: |
|
q = self.q_proj(hidden_states) |
|
k = self.k_proj(hidden_states) |
|
v = self.v_proj(hidden_states) |
|
|
|
|
|
if attention_mask is not None: |
|
v = v.mul_(attention_mask[:, -v.shape[-2]:, None]) |
|
|
|
q = F.silu(q) |
|
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_f_dim), (q, k)) |
|
v = rearrange(v, '... (h d) -> ... h d', d=self.head_i_dim) |
|
|
|
z = k.float().logcumsumexp(1) |
|
|
|
if cu_seqlens is not None: |
|
raise NotImplementedError("LightNet does not support variable-length sequences for now.") |
|
k, g = torch.exp(k - z).to(k.dtype), (torch.cat((z[:, :1], z[:, :-1]), 1) - z).to(k.dtype) |
|
|
|
recurrent_state = last_state['recurrent_state'] if last_state is not None else None |
|
if mode == 'fused_recurrent': |
|
o, recurrent_state = fused_recurrent_gla( |
|
q=q, |
|
k=k, |
|
v=v, |
|
gk=g, |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
cu_seqlens=cu_seqlens, |
|
head_first=False |
|
) |
|
elif mode == 'chunk': |
|
o, recurrent_state = chunk_gla( |
|
q=q, |
|
k=k, |
|
v=v, |
|
g=g, |
|
initial_state=recurrent_state, |
|
output_final_state=use_cache, |
|
cu_seqlens=cu_seqlens, |
|
head_first=False |
|
) |
|
else: |
|
raise NotImplementedError(f"Not supported mode `{mode}`.") |
|
|
|
if past_key_values is not None: |
|
past_key_values.update( |
|
recurrent_state=recurrent_state, |
|
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None, |
|
layer_idx=self.layer_idx, |
|
offset=q.shape[1] |
|
) |
|
|
|
o = rms_norm_swish_gate_linear( |
|
rearrange(o, 'b t h d -> b t (h d)'), |
|
self.g_proj(hidden_states), |
|
self.g_norm.weight, |
|
self.g_norm.bias, |
|
self.o_proj.weight, |
|
self.o_proj.bias |
|
) |
|
return o, None, past_key_values |
|
|
|
def state_size(self, **kwargs) -> int: |
|
state_size = self.key_dim * self.head_i_dim |
|
for module in self.children(): |
|
if isinstance(module, ShortConvolution): |
|
state_size += module.state_size |
|
return state_size |
|
|