zaydzuhri's picture
Add files using upload-large-folder tool
4135502 verified
raw
history blame
11.8 kB
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from __future__ import annotations
import math
from typing import TYPE_CHECKING, Dict, Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
from fla.ops.gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
from fla.models.utils import Cache
@torch.compile
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
@torch.compile
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
class GatedDeltaNet(nn.Module):
"""
The layer implementaion for [Gated Delta Networks: Improving Mamba2 with Delta Rule](https://arxiv.org/abs/2412.06464). # noqa
Similar to Mamba2, each layer contains around 6*hidden_size*hidden_size parameters.
Parameter alloation when use_gate=True:
- 0.75 * hidden_size * hidden_size for the q_proj and k_proj each
- 1.5 * hidden_size * hidden_size for the v_proj, g_proj and o_proj each
- Others are ignorably small.
- In total = 0.75 * 2 + 1.5 * 3 = 6 * hidden_size * hidden_size
NOTE: num_heads * head_dim = 0.75 * hidden_size, please make sure to set the correct num_heads and head_dim.
Parameter allocation when use_gate=False:
- 1 * hidden_size * hidden_size for the q_proj and k_proj each
- 2 * hidden_size * hidden_size for the v_proj and o_proj each
- Others are ignorably small.
- In total = 1 * 2 + 2 * 2 = 6 * hidden_size * hidden_size
Args:
hidden_size (int, Optional):
The hidden size of the input. Default: 2048.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 2.0.
head_dim (int, Optional):
The dimension of each head. Default: 256.
num_heads (int, Optional):
The number of heads. Default: 4.
mode (str, Optional):
Which Gated DeltaNet kernel to use.
Currently available: `chunk` and `fused_recurrent`.
Default: `chunk`.
use_beta (bool, Optional):
Whether to use beta. Default: `True`.
use_gate (bool, Optional):
Whether to use output gate. Default: `True`.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `True`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
layer_idx (int, Optional):
The index of the layer. Default: None.
norm_eps (float, Optional):
The epsilon value for the normalization layer. Default: 1e-5.
"""
def __init__(
self,
hidden_size: int = 2048,
expand_v: float = 2,
head_dim: int = 256,
num_heads: int = 6,
mode: str = 'chunk',
use_gate: bool = True,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
layer_idx: int = None,
norm_eps: float = 1e-5,
**kwargs
) -> GatedDeltaNet:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_v = expand_v
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.head_dim = head_dim
self.num_heads = num_heads
self.key_dim = int(self.num_heads * self.head_dim)
self.value_dim = int(self.key_dim * self.expand_v)
self.head_k_dim = head_dim
self.head_v_dim = int(head_dim * self.expand_v)
self.layer_idx = layer_idx
# Consistency check: Ensure expand_v produces integer values
if not math.isclose(self.key_dim * expand_v, self.value_dim, rel_tol=1e-5):
raise ValueError(
f"expand_v={expand_v} does not produce an integer value when multiplied by key_dim={self.key_dim}. "
f"Resulting value_dim would be {self.key_dim * expand_v}, which is invalid for nn.Linear."
)
if not math.isclose(head_dim * expand_v, self.head_v_dim, rel_tol=1e-5):
raise ValueError(
f"expand_v={expand_v} does not produce an integer value when multiplied by head_dim={head_dim}. "
f"Resulting head_v_dim would be {head_dim * expand_v}, which is invalid for FusedRMSNormGated."
)
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
self.A_log = nn.Parameter(torch.log(A))
self.A_log._no_weight_decay = True
# hard coded for now
dt_min = 0.001
dt_max = 0.1
dt_init_floor = 1e-4
dt = torch.exp(
torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
)
dt = torch.clamp(dt, min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
self.dt_bias = nn.Parameter(inv_dt)
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
# name.endswith("bias") in param_grouping.py
self.dt_bias._no_weight_decay = True
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu'
)
self.k_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu'
)
self.v_conv1d = ShortConvolution(
hidden_size=self.value_dim,
kernel_size=conv_size,
activation='silu'
)
else:
raise UserWarning(
"ShortConvolution is crucial to the performance. "
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
)
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
else:
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[Dict]
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
if self.training:
assert mode == 'chunk', "Only chunk mode is supported in training."
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
cu_seqlens = kwargs.get('cu_seqlens', None)
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
q, conv_state_q = self.q_conv1d(
x=self.q_proj(hidden_states),
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
k, conv_state_k = self.k_conv1d(
x=self.k_proj(hidden_states),
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
v, conv_state_v = self.v_conv1d(
x=self.v_proj(hidden_states),
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
else:
q = F.silu(self.q_proj(hidden_states))
k = F.silu(self.k_proj(hidden_states))
v = F.silu(self.v_proj(hidden_states))
q, k = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim), (q, k))
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
beta = self.b_proj(hidden_states).sigmoid()
g = -self.A_log.float().exp() * F.softplus(self.a_proj(hidden_states).float() + self.dt_bias)
# dealing with padding
if attention_mask is not None:
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
g = g.mul(attention_mask[:, -g.shape[-2]:, None])
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
if mode == 'chunk':
o, recurrent_state = chunk_gated_delta_rule(
q=q,
k=k,
v=v,
g=g,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False,
use_qk_l2norm_in_kernel=True
)
elif mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gated_delta_rule(
q=q,
k=k,
v=v,
g=g,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False,
use_qk_l2norm_in_kernel=True
)
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[1]
)
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
o = self.o_norm(o, g)
else:
o = self.o_norm(o)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
return o, None, past_key_values