|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from transformers.utils import logging |
|
|
|
from fla.modules import GroupNorm |
|
from fla.ops.forgetting_attn.parallel import parallel_forgetting_attn |
|
|
|
if TYPE_CHECKING: |
|
from fla.models.utils import Cache |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ForgettingAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 2048, |
|
num_heads: int = 32, |
|
num_kv_heads: Optional[int] = None, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
window_size: Optional[int] = None, |
|
use_output_gate: bool = False, |
|
layer_idx: int = None |
|
): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
if num_kv_heads is None: |
|
self.num_kv_heads = self.num_heads |
|
else: |
|
self.num_kv_heads = num_kv_heads |
|
self.num_kv_groups = num_heads // self.num_kv_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.kv_dim = self.num_kv_heads * self.head_dim |
|
self.qkv_bias = qkv_bias |
|
self.qk_norm = qk_norm |
|
|
|
self.window_size = window_size |
|
self.use_output_gate = use_output_gate |
|
self.layer_idx = layer_idx |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias) |
|
self.f_proj = nn.Linear(self.hidden_size, self.num_heads, bias=True) |
|
|
|
if use_output_gate: |
|
self.g_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
|
if qk_norm: |
|
self.q_norm = GroupNorm( |
|
num_groups=self.num_heads, |
|
hidden_size=self.hidden_size, |
|
is_rms_norm=True, |
|
) |
|
self.k_norm = GroupNorm( |
|
num_groups=self.num_kv_heads, |
|
hidden_size=self.kv_dim, |
|
is_rms_norm=True, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if attention_mask is not None: |
|
assert len(attention_mask.shape) == 2, ( |
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " |
|
"for padding purposes (0 indicating padding). " |
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." |
|
) |
|
|
|
cu_seqlens = kwargs.get('cu_seqlens', None) |
|
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states) |
|
f = F.logsigmoid(self.f_proj(hidden_states).float()) |
|
if self.qk_norm: |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim) |
|
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim) |
|
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim) |
|
|
|
o = parallel_forgetting_attn(q, k, v, f, cu_seqlens=cu_seqlens) |
|
o = rearrange(o, '... h d -> ... (h d)') |
|
if self.use_output_gate: |
|
o = self.g_proj(hidden_states).sigmoid() * o |
|
o = self.o_proj(o) |
|
|
|
return o, None, past_key_values |
|
|