File size: 20,264 Bytes
0298ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# This file applies the PT-D parallelisms (except pipeline parallelism) and various
# training techniques (e.g. activation checkpointing and compile) to the Llama model.
from collections import defaultdict
import torch
import torch.nn as nn
from torch.distributed import DeviceMesh
from torch.distributed._composable.fsdp import CPUOffloadPolicy, MixedPrecisionPolicy, fully_shard
from torch.distributed._composable.replicate import replicate
from torch.distributed._tensor import Replicate, Shard
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import checkpoint_wrapper as ptd_checkpoint_wrapper
from torch.distributed.tensor.parallel import (
ColwiseParallel,
PrepareModuleInput,
PrepareModuleOutput,
RowwiseParallel,
SequenceParallel,
parallelize_module
)
from fla.modules.fused_linear_cross_entropy import LinearLossParallel
from fla.modules.mlp import SwiGLULinearParallel
from fla.modules.parallel import PrepareModuleWeight
from torchtitan.config_manager import TORCH_DTYPE_MAP, JobConfig
from torchtitan.distributed.parallel_dims import ParallelDims
from torchtitan.tools.logging import logger
def parallelize_fla(
model: nn.Module,
world_mesh: DeviceMesh,
parallel_dims: ParallelDims,
job_config: JobConfig,
):
"""
Apply tensor parallelism, activation checkpointing, torch.compile, and data
parallelism to the model.
NOTE: The passed-in model preferably should be on meta device. Otherwise,
the model must fit on GPU or CPU memory.
"""
if parallel_dims.tp_enabled:
if (
job_config.experimental.enable_async_tensor_parallel
and not job_config.training.compile
):
raise RuntimeError("Async TP requires --training.compile")
enable_float8_linear = "float8" in job_config.model.converters
apply_tp(
model,
world_mesh["tp"],
loss_parallel=parallel_dims.loss_parallel_enabled,
enable_float8=enable_float8_linear,
enable_async_tp=job_config.experimental.enable_async_tensor_parallel,
)
if job_config.activation_checkpoint.mode != "none":
apply_ac(model, job_config.activation_checkpoint)
# turn on per-block compile after AC wrapping and before FSDP
if job_config.training.compile:
apply_compile(model)
if (
parallel_dims.dp_shard_enabled or parallel_dims.cp_enabled
): # apply FSDP or HSDP, potentially with Context Parallel
if parallel_dims.dp_replicate_enabled:
dp_mesh_dim_names = ("dp_replicate", "dp_shard_cp")
else:
dp_mesh_dim_names = ("dp_shard_cp",)
apply_fsdp(
model,
world_mesh[tuple(dp_mesh_dim_names)],
param_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_param],
reduce_dtype=TORCH_DTYPE_MAP[job_config.training.mixed_precision_reduce],
pp_enabled=parallel_dims.pp_enabled,
cpu_offload=job_config.training.enable_cpu_offload,
reshard_after_forward_policy=job_config.training.fsdp_reshard_after_forward,
)
if parallel_dims.dp_replicate_enabled:
logger.info("Applied HSDP to the model")
else:
logger.info("Applied FSDP to the model")
if parallel_dims.cp_enabled:
logger.info("Applied Context Parallel to the model")
if job_config.training.enable_cpu_offload:
logger.info("Applied CPU Offloading to the model")
elif parallel_dims.dp_replicate_enabled:
if world_mesh.ndim > 1:
raise RuntimeError("DDP has not supported > 1D parallelism")
apply_ddp(
model,
world_mesh,
enable_compile=job_config.training.compile,
enable_compiled_autograd=job_config.experimental.enable_compiled_autograd,
)
class TPPlan:
def __init__(
self,
model=None,
loss_parallel=False,
enable_float8=False,
):
self.model = model
self.loss_parallel = loss_parallel
self.enable_float8 = enable_float8
self.base_model_prefix = getattr(model, "base_model_prefix", "model")
# TODO(vkuzo): once float8 configuration supports delayed scaling,
# add a check here to enforce supported float8 all-gather configurations
# TODO(vkuzo): add the items below to __init__.py of torchao.float8 and import from there
try:
from torchao.float8.float8_tensor_parallel import (
Float8ColwiseParallel,
Float8RowwiseParallel,
PrepareFloat8ModuleInput
)
except ImportError:
Float8ColwiseParallel = None
Float8RowwiseParallel = None
PrepareFloat8ModuleInput = None
if self.enable_float8 and Float8ColwiseParallel is not None:
self.rowwise_parallel = Float8RowwiseParallel
self.colwise_parallel = Float8ColwiseParallel
self.prepare_module_input = PrepareFloat8ModuleInput
self.prepare_module_output = PrepareModuleOutput
else:
self.rowwise_parallel = RowwiseParallel
self.colwise_parallel = ColwiseParallel
self.prepare_module_input = PrepareModuleInput
self.prepare_module_output = PrepareModuleOutput
@property
def model_plan(self):
plans = {
f"{self.base_model_prefix}.embeddings": RowwiseParallel(
input_layouts=Replicate(),
output_layouts=Shard(1),
),
f"{self.base_model_prefix}.norm": SequenceParallel(),
}
if self.loss_parallel:
plans.update(
{
"lm_head": ColwiseParallel(
input_layouts=Shard(1),
output_layouts=Shard(-1) if self.loss_parallel else Replicate(),
use_local_output=not self.loss_parallel,
),
}
)
else:
plans.update(
{
"lm_head": PrepareModuleWeight(layouts=Replicate()),
"criterion": LinearLossParallel(),
}
)
return plans
@property
def layer_plan(self):
return {
"attn_norm": SequenceParallel(),
**self.attn_plan,
"mlp_norm": SequenceParallel(),
**self.mlp_plan,
}
@property
def attn_plan(self):
raise NotImplementedError(
f"TP plans for token mixing layers of {self.model.config.model_type} not implemented"
)
@property
def mlp_plan(self):
return {
"mlp": self.prepare_module_input(
input_layouts=(Shard(1),),
desired_input_layouts=(Replicate(),),
),
"mlp.gate_proj": self.colwise_parallel(),
"mlp.up_proj": self.colwise_parallel(),
"mlp.down_proj": self.rowwise_parallel(output_layouts=Shard(1)),
"mlp.swiglu_linear": SwiGLULinearParallel(output_layouts=Shard(1)),
}
class TransformerTPPlan(TPPlan):
@property
def attn_plan(self):
return {
"attn": self.prepare_module_input(
input_kwarg_layouts={"hidden_states": Shard(1)},
desired_input_kwarg_layouts={"hidden_states": Replicate()},
),
"attn.q_proj": self.colwise_parallel(),
"attn.k_proj": self.colwise_parallel(),
"attn.v_proj": self.colwise_parallel(),
"attn.o_proj": self.rowwise_parallel(output_layouts=Shard(1)),
}
class GLATPPlan(TPPlan):
@property
def attn_plan(self):
return {
"attn": self.prepare_module_input(
input_kwarg_layouts={"hidden_states": Shard(1)},
desired_input_kwarg_layouts={"hidden_states": Replicate()},
),
"attn.q_proj": self.colwise_parallel(),
"attn.k_proj": self.colwise_parallel(),
"attn.v_proj": self.colwise_parallel(),
"attn.g_proj": self.colwise_parallel(),
"attn.gk_proj.0": PrepareModuleWeight(layouts=Replicate()),
"attn.gk_proj.1": self.colwise_parallel(),
"attn.g_norm": SequenceParallel(sequence_dim=-1),
"attn.o_proj": self.rowwise_parallel(output_layouts=Shard(1)),
}
TP_PLAN_MAP = {"transformer": TransformerTPPlan, "gla": GLATPPlan}
def apply_tp(
model: nn.Module,
tp_mesh: DeviceMesh,
loss_parallel: bool,
enable_float8: bool,
enable_async_tp: bool,
):
"""Apply tensor parallelism."""
# 1. Parallelize the embedding and shard its outputs (which are the first
# transformer block's inputs)
# 2. Parallelize the root norm layer over the sequence dim
# 3. Parallelize the final linear output layer
tp_plan = TP_PLAN_MAP[model.config.model_type](
model, loss_parallel=loss_parallel, enable_float8=enable_float8
)
parallelize_module(model, tp_mesh, tp_plan.model_plan)
blocks = get_blocks(model)
if blocks is None:
logger.warning("No block found for tensor parallelism")
else:
for _, block in enumerate(blocks):
parallelize_module(
module=block,
device_mesh=tp_mesh,
parallelize_plan=tp_plan.layer_plan,
)
if enable_async_tp:
from torch.distributed._symmetric_memory import enable_symm_mem_for_group
torch._inductor.config._micro_pipeline_tp = True
enable_symm_mem_for_group(tp_mesh.get_group().group_name)
logger.info(
f"Applied {'Float8 ' if enable_float8 else ''}{'Async ' if enable_async_tp else ''}"
"Tensor Parallelism to the model"
)
# for selective op activation checkpointing
_save_list = {
torch.ops.aten.mm.default,
torch.ops.aten._scaled_dot_product_efficient_attention.default,
torch.ops.aten._scaled_dot_product_flash_attention.default,
torch.ops._c10d_functional.reduce_scatter_tensor.default,
# for low precision training, it's useful to always save
# the result of max, since the absolute maximum is
# used to compute the scaling factor for quantization.
torch.ops.aten.max.default,
}
def _apply_ac_to_block(module: nn.Module, ac_config):
valid_ac_modes = ("full", "selective")
if ac_config.mode not in valid_ac_modes:
raise ValueError(
f"Invalid AC mode: {ac_config.mode}. Valid modes: {valid_ac_modes}"
)
if ac_config.mode == "full":
return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
assert ac_config.mode == "selective", f"{ac_config.mode}"
use_op_sac = ac_config.selective_ac_option == "op"
use_layer_sac = ac_config.selective_ac_option.isdigit()
if not use_op_sac and not use_layer_sac:
raise ValueError(
f"Invalid selective AC option: {ac_config.selective_ac_option}. "
f"Valid options: 'op' or a positive int representing layer frequency"
)
if use_op_sac:
from torch.utils.checkpoint import CheckpointPolicy, create_selective_checkpoint_contexts
def _get_custom_policy(meta):
def _custom_policy(ctx, func, *args, **kwargs):
mode = "recompute" if ctx.is_recompute else "forward"
mm_count_key = f"{mode}_mm_count"
if func == torch.ops.aten.mm.default:
meta[mm_count_key] += 1
# Saves output of all compute ops, except every second mm
to_save = func in _save_list and not (
func == torch.ops.aten.mm.default and meta[mm_count_key] % 2 == 0
)
return (
CheckpointPolicy.MUST_SAVE
if to_save
else CheckpointPolicy.PREFER_RECOMPUTE
)
return _custom_policy
def selective_checkpointing_context_fn():
meta = defaultdict(int)
return create_selective_checkpoint_contexts(_get_custom_policy(meta))
return ptd_checkpoint_wrapper(
module,
context_fn=selective_checkpointing_context_fn,
preserve_rng_state=False,
)
elif use_layer_sac:
# Checkpoint every `ac_freq` of the modules passed to this function
ac_freq = int(ac_config.selective_ac_option)
ptd_checkpoint_wrapper.__dict__.setdefault("_count", 0)
ptd_checkpoint_wrapper._count += 1
if not ac_freq or ptd_checkpoint_wrapper._count % ac_freq == 0:
return ptd_checkpoint_wrapper(module, preserve_rng_state=False)
else:
return module
def apply_ac(model: nn.Module, ac_config):
"""Apply activation checkpointing to the model."""
blocks = get_blocks(model)
if blocks is None:
logger.warning("No block found for activation checkpointing")
return
for layer_id, block in blocks.named_children():
block = _apply_ac_to_block(block, ac_config)
blocks.register_module(layer_id, block)
logger.info(f"Applied {ac_config.mode} activation checkpointing to the model")
def apply_compile(model: nn.Module):
"""
Apply torch.compile to each block, which makes compilation efficient due to
repeated structure. Alternatively one can compile the whole model (after applying DP).
"""
blocks = get_blocks(model)
if blocks is None:
logger.warning("No block found for torch.compile")
else:
for layer_id, block in blocks.named_children():
block = torch.compile(block)
blocks.register_module(layer_id, block)
logger.info("Compiling each block with torch.compile")
real_model = get_model(model)
logger.info("Compiling the embedding, norm, and lm_head layers with torch.compile")
embeddings_key = get_components_name(real_model, "tok_embeddings")
if embeddings_key is not None:
embeddings = torch.compile(getattr(real_model, embeddings_key), fullgraph=True)
real_model.register_module(embeddings_key, embeddings)
norm_key = get_components_name(real_model, "norm")
if norm_key is not None:
norm = torch.compile(getattr(real_model, norm_key), fullgraph=True)
real_model.register_module(norm_key, norm)
lm_head_key = get_components_name(model, "lm_head")
if lm_head_key is not None:
lm_head = torch.compile(getattr(model, lm_head_key), fullgraph=True)
model.register_module(lm_head_key, lm_head)
logger.info("Compiling the entire model with torch.compile")
model = torch.compile(model)
def apply_fsdp(
model: nn.Module,
dp_mesh: DeviceMesh,
param_dtype: torch.dtype,
reduce_dtype: torch.dtype,
pp_enabled: bool,
cpu_offload: bool = False,
reshard_after_forward_policy: str = "default",
):
"""
Apply data parallelism (via FSDP2) to the model.
Args:
model (nn.Module): The model to apply data parallelism to.
dp_mesh (DeviceMesh): The device mesh to use for data parallelism.
param_dtype (torch.dtype): The data type to use for model parameters.
reduce_dtype (torch.dtype): The data type to use for reduction operations.
pp_enabled (bool): Whether pipeline parallelism is enabled.
cpu_offload (bool, optional): Whether to offload model parameters to CPU. Defaults to False.
reshard_after_forward_policy (str, optional):
The policy to use for resharding after forward pass. Defaults to "default".
Other options: "never", "always".
- "default" applies default resharding behavior, implementing "smart defaults" for known optimal scenarios.
- "always" will enable `reshard_after_forward` for all forward passes.
- "never" will disable `reshard_after_forward` for all forward passes.
"""
mp_policy = MixedPrecisionPolicy(param_dtype=param_dtype, reduce_dtype=reduce_dtype)
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
if cpu_offload:
fsdp_config["offload_policy"] = CPUOffloadPolicy()
blocks = get_blocks(model)
if blocks is None:
logger.warning("No block found for FSDP")
else:
total_blocks = len(blocks)
for layer_id, block in enumerate(blocks):
if reshard_after_forward_policy == "always":
reshard_after_forward = True
elif reshard_after_forward_policy == "never":
reshard_after_forward = False
elif reshard_after_forward_policy == "default":
if pp_enabled:
# For PP, do not reshard after forward to avoid per-microbatch
# all-gathers, which can be expensive and non-overlapped
reshard_after_forward = False
else:
# As an optimization, do not reshard after forward for the last
# transformer block since FSDP would prefetch it immediately
reshard_after_forward = int(layer_id) < total_blocks - 1
else:
raise ValueError(
f"Invalid reshard_after_forward_policy: {reshard_after_forward_policy}."
)
fully_shard(
block,
**fsdp_config,
reshard_after_forward=reshard_after_forward,
)
fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)
def apply_ddp(
model: nn.Module,
dp_mesh: DeviceMesh,
enable_compile: bool,
enable_compiled_autograd: bool,
):
if enable_compile:
if enable_compiled_autograd:
torch._dynamo.config.optimize_ddp = (
"python_reducer_without_compiled_forward"
)
else:
torch._dynamo.config.optimize_ddp = "ddp_optimizer"
replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
logger.info("Applied DDP to the model")
def get_model(model):
base_model_prefix = getattr(model, "base_model_prefix", "model")
if not hasattr(model, base_model_prefix):
return None
model = getattr(model, base_model_prefix)
return model
def get_blocks(model):
# TODO[flame]: adapt for network not using 'layers' attribute
model = get_model(model)
if not hasattr(model, "layers"):
logger.warning('no "layers" in model can be found')
return None
return model.layers
def get_components_name(model, component_name):
"""
We try to catch tok_embeddings, norm layers and lm_head layers
We do not catch the layer names in the blocks, for blocks see `get_blocks`
We assume the model has the following structure:
LlamaForCausalLM:
Model:
embed_tokens,
layers,
norm,
lm_head
***
so, to search 'tok_embeddings' and 'norm' we need to pass `get_model(model)`
and for 'lm_head' we need to pass `model`
***
"""
if component_name == "tok_embeddings":
if hasattr(model, "tok_embeddings"):
return "tok_embeddings"
elif hasattr(model, "embed_tokens"):
return "embed_tokens"
elif hasattr(model, "embeddings"):
return "embeddings"
else:
logger.warning("No tok_embeddings found in model")
return None
elif component_name == "norm":
if hasattr(model, "norm"):
return "norm"
elif hasattr(model, "norms"):
return "norms"
elif hasattr(model, "layernorm"):
return "layernorm"
else:
logger.warning("No norm found in model")
return None
elif component_name == "lm_head":
if hasattr(model, "lm_head"):
return "lm_head"
else:
logger.warning("No lm_head found in model")
return None
|