File size: 9,661 Bytes
4135502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import logging

import torch
import triton
import triton.language as tl

from fla.utils import autocast_custom_bwd, autocast_custom_fwd, check_pytorch_version, input_guard, use_cuda_graph

logger = logging.getLogger(__name__)

if not check_pytorch_version('2.4'):
    logger.warning('PyTorch < 2.4 detected - computations may be slower due to lack of optimizations')


@triton.autotune(
    configs=[
        triton.Config({'BLOCK_SIZE': block_size})
        for block_size in [128, 256, 512, 1024, 2048, 4096, 8192]
    ],
    key=['hidden_dim'],
    use_cuda_graph=use_cuda_graph,
)
@triton.jit
def rwkv_seq_mix_kernel(
    x_ptr,
    x_prev_ptr,
    mix_k_ptr,
    output_ptr,
    batch_size: tl.constexpr,
    token_length,
    hidden_dim: tl.constexpr,
    BLOCK_SIZE: tl.constexpr
):
    block_start = tl.program_id(0) * BLOCK_SIZE
    block_idx = block_start + tl.arange(0, BLOCK_SIZE)[:]

    total_seq_dim = token_length * hidden_dim
    batch_idx = block_idx // total_seq_dim
    seq_and_feat = block_idx % total_seq_dim
    seq_idx = seq_and_feat // hidden_dim
    feat_idx = seq_and_feat % hidden_dim

    is_valid = (batch_idx < batch_size) & (seq_idx < token_length)

    x_idx = batch_idx * total_seq_dim + seq_idx * hidden_dim + feat_idx

    curr_x = tl.load(x_ptr + x_idx, mask=is_valid, other=0.0).to(tl.float32)
    k_value = tl.load(mix_k_ptr + feat_idx).to(tl.float32)

    is_first = seq_idx < 1
    prev_state_idx = batch_idx * hidden_dim + feat_idx
    prev_state = tl.load(x_prev_ptr + prev_state_idx,
                         mask=(is_first & is_valid),
                         other=0.0).to(tl.float32)

    prev_x_idx = x_idx - hidden_dim
    prev_x = tl.load(x_ptr + prev_x_idx,
                     mask=(~is_first & is_valid),
                     other=0.0).to(tl.float32)

    prev_value = tl.where(is_first, prev_state, prev_x)
    state_diff = prev_value - curr_x
    mixed = state_diff * k_value
    result = tl.cast(curr_x + mixed, dtype=output_ptr.dtype.element_ty, fp_downcast_rounding='rtne')
    tl.store(output_ptr + x_idx, result, mask=is_valid)


@triton.jit
def rwkv_channel_mixing_pow_and_relu(
    in_ptr,
    out_ptr,
    BLOCK_SIZE: tl.constexpr
):
    """Fused ReLU and Power operation: x = ReLU(x)^2"""
    xoffset = tl.program_id(0) * BLOCK_SIZE
    xindex = xoffset + tl.arange(0, BLOCK_SIZE)
    x0 = xindex
    x = tl.load(in_ptr + (x0), None)
    x = tl.maximum(x, 0.0).to(tl.float32)
    x = tl.cast(x * x, dtype=out_ptr.dtype.element_ty, fp_downcast_rounding='rtne')
    tl.store(out_ptr + (x0), x, None)


def rwkv_mix_torch(x: torch.Tensor, x_prev: torch.Tensor, x_k: torch.Tensor):
    if x_prev.dim() == 2:
        x_prev = x_prev.unsqueeze(1)  # (batch_size, 1, hidden_dim)
    xx = torch.cat((x_prev, x[:, :-1, :]), dim=1) - x
    k = x.addcmul(xx, x_k)
    return k


def rwkv_relu_and_square_torch(x: torch.Tensor):
    return torch.relu(x) ** 2


def rwkv_mix_fwd(x, x_prev, x_k):
    has_batch = x.dim() == 3

    if has_batch:
        batch_size, token_length, hidden_dim = x.shape
    else:
        token_length, hidden_dim = x.shape
        batch_size = 1
        x = x.unsqueeze(0)
        x_prev = x_prev.unsqueeze(0)

    token_length = x.shape[1]
    hidden_dim = x.shape[2]
    total_elements = batch_size * token_length * hidden_dim

    output = torch.empty_like(x)

    def grid(meta): return (
        (total_elements + meta['BLOCK_SIZE'] - 1) // meta['BLOCK_SIZE'],  # grid_0
        1,  # grid_1
        1   # grid_2
    )

    rwkv_seq_mix_kernel[grid](
        x.contiguous(),
        x_prev.contiguous(),
        x_k.squeeze(),
        output,
        batch_size=batch_size,
        token_length=token_length,
        hidden_dim=hidden_dim,
    )
    if not has_batch:
        output = output.squeeze(0)
    return output


def rwkv_relu_and_square_fwd(x: torch.Tensor, inplace: bool = True):
    """
    Triton implementation of RWKV's ReLU and square operation
    Args:
        x: Input tensor
    Returns:
        Tensor after ReLU and square operations
    """
    x = x.contiguous()
    output = x if inplace else torch.empty_like(x)

    def grid(meta): return (
        (output.numel() + meta['BLOCK_SIZE'] - 1) // meta['BLOCK_SIZE'],  # grid_0
        1,  # grid_1
        1   # grid_2
    )
    rwkv_channel_mixing_pow_and_relu[grid](
        x,
        output,
        BLOCK_SIZE=4096,
    )

    return output


@triton.jit
def relu_square_bwd_kernel(
    out_ptr,
    forward_input_ptr,
    BLOCK_SIZE: tl.constexpr
):
    """ReLU(x)^2 backward kernel
    grad_input = grad_output * 2 * x if x > 0 else 0
    """
    pid = tl.program_id(0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)

    x = tl.load(forward_input_ptr + offsets).to(tl.float32)
    grad = tl.load(out_ptr + offsets).to(tl.float32)

    x = tl.maximum(x, 0.0)

    grad_input = grad * 2 * x

    tl.store(out_ptr + offsets, grad_input.to(out_ptr.dtype.element_ty))


@triton.autotune(
    configs=[
        triton.Config({'BLOCK_SIZE': block_size})
        for block_size in [128, 256, 512, 1024, 2048, 4096, 8192]
    ],
    key=['hidden_dim'],
    use_cuda_graph=use_cuda_graph,
)
@triton.jit
def rwkv_mix_bwd_kenel(
    dk1_ptr0,
    xk_ptr,
    dx_ptr,
    dx_prev_ptr,
    batch_size,
    token_length,
    hidden_dim: tl.constexpr,
    BLOCK_SIZE: tl.constexpr
):
    pid = tl.program_id(0)
    offsets = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)

    batch_idx = offsets // (token_length * hidden_dim)
    seq_feat = offsets % (token_length * hidden_dim)
    seq_idx = seq_feat // hidden_dim
    feat_idx = seq_feat % hidden_dim

    is_valid = offsets < (batch_size * token_length * hidden_dim)

    dk1 = tl.load(dk1_ptr0 + offsets, mask=is_valid)
    xk = tl.load(xk_ptr + feat_idx, mask=is_valid)
    prod = dk1 * xk

    mask_next = seq_idx < (token_length - 1)
    next_offset = offsets + hidden_dim
    dk1_next = tl.load(dk1_ptr0 + next_offset, mask=mask_next & is_valid, other=0.0)
    prod_next = dk1_next * xk
    dx_val = dk1 - prod + tl.where(mask_next, prod_next, 0.0)
    dx_val = tl.cast(dx_val, dtype=dx_ptr.dtype.element_ty, fp_downcast_rounding='rtne')
    tl.store(dx_ptr + offsets, dx_val, mask=is_valid)

    dx_prev_offset = batch_idx * hidden_dim + feat_idx
    is_first_step = seq_idx == 0

    tl.store(
        dx_prev_ptr + dx_prev_offset,
        tl.cast(prod, dtype=dx_prev_ptr.dtype.element_ty),
        mask=is_first_step
    )


@torch.compile(fullgraph=True)
def compute_x_k_grad(dk1, x, x_prev):
    """
    Args:
        dk1: (batch*seq_len, hidden_dim)
        x: (batch, seq_len, hidden_dim)
        x_prev: (batch, hidden_dim) or (batch, 1, hidden_dim)
    """

    if x_prev.dim() == 2:
        x_prev = x_prev.unsqueeze(1)  # (batch, 1, hidden_dim)
    xx = torch.cat((x_prev, x[:, :-1, :]), dim=1) - x  # (batch, seq_len, hidden_dim)

    # (hidden_dim,) --> (1, 1, hidden_dim)
    grad_x_k = (dk1 * xx.reshape(-1, x.shape[2])).sum(dim=0).view(1, 1, -1)
    return grad_x_k


def rwkv_channel_mixing_bwd(grad_output, x, x_prev, x_k, key_weight, value_weight, k1, k1_K, k, inplace=True):
    batch_size = x.shape[0] if x.dim() == 3 else 1
    seq_len, n_embd = x.shape[-2], x.shape[-1]

    dV = k.transpose(-2, -1) @ grad_output
    dk = grad_output @ value_weight.transpose(-2, -1)

    BLOCK_SIZE = 4096
    grid = ((dk.numel() + BLOCK_SIZE - 1) // BLOCK_SIZE,)
    relu_square_bwd_kernel[grid](
        dk,
        k1_K,
        BLOCK_SIZE=BLOCK_SIZE
    )

    dK = k1.transpose(-2, -1) @ dk
    dk1 = dk @ key_weight.transpose(-2, -1)
    dk1 = dk1.view(-1, n_embd).contiguous()

    dk_reduced = compute_x_k_grad(dk1, x, x_prev)
    dx_prev = torch.empty_like(x_prev) if not inplace else x_prev
    dx = torch.empty_like(x) if not inplace else x

    def grid(meta): return ((batch_size * seq_len * n_embd + meta['BLOCK_SIZE'] - 1) // meta['BLOCK_SIZE'], 1, 1)
    rwkv_mix_bwd_kenel[grid](
        dk1,
        x_k.squeeze(),
        dx,
        dx_prev,
        batch_size,
        seq_len,
        n_embd,
    )
    # dx_prev.shape batch_size, seq_len, n_embd
    return dx, dx_prev, dk_reduced, dK, dV


class Rwkv7ChannelMixing(torch.autograd.Function):
    @staticmethod
    @input_guard
    @autocast_custom_fwd
    def forward(ctx, x, x_prev, x_k, key_weight, value_weight, inplace: bool = True):
        k1 = rwkv_mix_fwd(x, x_prev, x_k)
        k1_K = k1 @ key_weight
        k = rwkv_relu_and_square_fwd(k1_K, inplace=True)
        ctx.save_for_backward(x, x_prev, x_k, key_weight, value_weight)
        ctx.inplace = inplace
        return k @ value_weight

    @staticmethod
    @input_guard
    @autocast_custom_bwd
    def backward(ctx, dkv):
        x, x_prev, x_k, key_weight, value_weight = ctx.saved_tensors
        k1 = rwkv_mix_fwd(x, x_prev, x_k)
        k1_K = k1 @ key_weight
        k = rwkv_relu_and_square_fwd(k1_K, inplace=False)
        dx, dx_prev, dk_reduced, dK, dV = rwkv_channel_mixing_bwd(
            dkv, x, x_prev, x_k, key_weight, value_weight, k1, k1_K, k, ctx.inplace)
        return dx, dx_prev, dk_reduced, dK, dV, None


def channel_mixing_rwkv7(x: torch.Tensor, x_prev: torch.Tensor, x_k: torch.Tensor,
                         key_weight: torch.Tensor, value_weight: torch.Tensor, inplace: bool = True):
    assert x.dim() == 3

    return Rwkv7ChannelMixing.apply(x, x_prev, x_k, key_weight, value_weight, inplace), x[-1, :]


def channel_mixing_rwkv7_torch(x, x_prev, x_k, key_weight, value_weight):
    k1 = rwkv_mix_torch(x, x_prev, x_k)
    k1_K = k1 @ key_weight
    k = rwkv_relu_and_square_torch(k1_K)
    return k @ value_weight, x[-1, :]