File size: 12,542 Bytes
bfd666f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from packaging import version
from fla.ops.linear_attn.utils import normalize_output
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
@triton.jit
def fused_chunk_linear_attn_fwd_kernel(
q, # query [B, H, T, K]
k, # key [B, H, T, V]
v, # value [B, H, T, V]
o, # output [B, H, T, V]
h0,
ht,
scale,
B, # batch size
H, # H
T, # T
K: tl.constexpr, # K
V: tl.constexpr, # V
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
BK: tl.constexpr, # BLOCK SIZE along the K dimension
BV: tl.constexpr, # BLOCK SIZE along the V dimension
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr,
CHECK: tl.constexpr
):
# indices
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_i = tl.arange(0, BT)
# [BT, BT]
m_s = o_i[:, None] >= o_i[None, :]
# [BK, BV]
b_h = tl.zeros([BK, BV], dtype=tl.float32)
# make block pointers
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + (i_bh+i_k*B*H) * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
for i in range(0, tl.cdiv(T, BT)):
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BK, BT]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BT, BT]
b_s = tl.dot(b_q, b_k, allow_tf32=False)
b_s = tl.where(m_s, b_s, 0)
# [BT, BV]
b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
if CHECK and i == 0:
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
else:
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
b_h = b_h + tl.dot(b_k, b_v, allow_tf32=False)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
p_q = tl.advance(p_q, (BT, 0))
p_k = tl.advance(p_k, (0, BT))
p_v = tl.advance(p_v, (BT, 0))
p_o = tl.advance(p_o, (BT, 0))
if STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
@triton.jit
def fused_chunk_linear_attn_bwd_kernel(
q, # query [B, H, T, K]
k, # key [B, H, T, V]
v, # value [B, H, T, V]
do, # gradient of output [B, H, T, V]
dq, # gradient of query [NV, B, H, T, K]
dk, # gradient of key [NV, B, H, T, K]
dv, # gradient of value [NK, B, H, T, V]
h0, # initial state of the chunk [B, H, K, V]
scale, # K ** -0.5
B, # B
H, # H
T, # T
K: tl.constexpr, # K
V: tl.constexpr, # V
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
BK: tl.constexpr, # BLOCK SIZE along the K dimension
BV: tl.constexpr, # BLOCK SIZE along the V dimension
USE_INITIAL_STATE: tl.constexpr,
CHECK: tl.constexpr
):
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
# [BV, BK]
b_h = tl.zeros([BV, BK], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
for i in range(0, tl.cdiv(T, BT)):
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0))
p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * T*K, (T, K), (K, 1), (i*BT, i_k*BK), (BT, BK), (1, 0))
# [BT, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [V, BT]
b_v = tl.load(p_v, boundary_check=(0, 1))
# [BT, V]
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BT, BT]
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
b_ds = tl.where(m_s, b_ds, 0)
# [BT, BK]
b_dq = tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False)
# [BV, BK]
if CHECK and i == 0:
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False)
else:
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False)
b_dq *= scale
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
# sync threads
b_h = None
tl.debug_barrier()
# [BK, BV]
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
m_s = o_i[:, None] <= o_i[None, :]
for i in range(1, tl.cdiv(T, BT) + 1):
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, T - i * BT), (BK, BT), (0, 1))
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * T*K, (T, K), (K, 1), (T - i*BT, i_k*BK), (BT, BK), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * T*V, (T, V), (V, 1), (T - i*BT, i_v*BV), (BT, BV), (1, 0))
# [BK, BT]
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BT, BK]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
# [BT, BT]
b_s = tl.dot(b_k, b_q, allow_tf32=False)
b_s = tl.where(m_s, b_s, 0).to(b_q.dtype)
# [BT, BT]
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False)
b_ds = tl.where(m_s, b_ds, 0).to(b_q.dtype)
# [BT, BK]
b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False)
# [BT, BV]
b_dv = tl.dot(b_s, b_do, allow_tf32=False)
if CHECK and i == 1:
b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False)
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
else:
b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False)
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False)
b_dh += tl.dot(b_q, b_do, allow_tf32=False)
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
class FusedChunkLinearAttentionFunction(torch.autograd.Function):
@staticmethod
@input_guard
@autocast_custom_fwd
def forward(ctx, q, k, v, scale, initial_state, output_final_state):
B, H, T, K, V = *k.shape, v.shape[-1]
BT = 64
BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64)
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
num_warps = 4
num_stages = 1
o = q.new_empty(NK, B, H, T, V)
final_state = q.new_empty(B, H, K, V, dtype=torch.float) if output_final_state else None
# the bug still exists even for Triton 2.2 on H100 GPUs
# so we always enable initial checks
CHECK = True
if version.parse(triton.__version__) < version.parse('2.2.0'):
import warnings
warnings.warn(
"Triton<2.2.0 detected for running this kernel, "
"which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) "
"that lead to significant precision loss. "
"We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. "
"For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)."
)
CHECK = True
grid = (NV, NK, B * H)
fused_chunk_linear_attn_fwd_kernel[grid](
q, k, v, o, initial_state, final_state,
scale,
B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV,
USE_INITIAL_STATE=initial_state is not None,
STORE_FINAL_STATE=output_final_state,
CHECK=CHECK,
num_warps=num_warps,
num_stages=num_stages
)
o = o.sum(0) if NK > 1 else o[0]
ctx.save_for_backward(q, k, v, initial_state)
ctx.scale = scale
ctx.CHECK = CHECK
return o.to(q.dtype), final_state
@staticmethod
@input_guard
@autocast_custom_bwd
def backward(ctx, do, dht=None):
q, k, v, initial_state = ctx.saved_tensors
B, H, T, K, V = *k.shape, v.shape[-1]
scale = ctx.scale
BT = 64
BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64)
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
num_warps = 4
num_stages = 1
dq = q.new_empty(NV, B, H, T, K)
dk = q.new_empty(NV, B, H, T, K)
dv = q.new_empty(NK, B, H, T, V)
grid = (NV, NK, B * H)
fused_chunk_linear_attn_bwd_kernel[grid](
q, k, v, do, dq, dk, dv, initial_state,
scale,
B=B, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV,
USE_INITIAL_STATE=initial_state is not None,
CHECK=ctx.CHECK,
num_warps=num_warps,
num_stages=num_stages
)
dq = dq.sum(0)
dk = dk.sum(0)
dv = dv.sum(0)
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None, None, None
def fused_chunk_linear_attn(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
scale: Optional[float] = None,
initial_state: torch.Tensor = None,
output_final_state: bool = False,
normalize: bool = True,
head_first: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
q (torch.Tensor):
queries of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
k (torch.Tensor):
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`
v (torch.Tensor):
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`
scale (Optional[int]):
Scale factor for linear attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
initial_state (Optional[torch.Tensor]):
Initial state of shape `[B, H, K, V]`. Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state of shape `[B, H, K, V]`. Default: `False`.
normalize (bool):
Whether to normalize the output. Default: `True`.
head_first (Optional[bool]):
Whether the inputs are in the head-first format. Default: `True`.
Returns:
o (torch.Tensor):
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`
final_state (torch.Tensor):
Final state of shape `[B, H, K, V]` if `output_final_state=True` else `None`
"""
if scale is None:
scale = q.shape[-1] ** -0.5
if not head_first:
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
o, final_state = FusedChunkLinearAttentionFunction.apply(q, k, v, scale, initial_state, output_final_state)
if normalize:
o = normalize_output(q * scale, k, o)
if not head_first:
o = o.transpose(1, 2)
return o, final_state
|