File size: 10,963 Bytes
4135502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]

from __future__ import annotations

from typing import TYPE_CHECKING, Optional, Tuple

import torch
import torch.nn as nn
from einops import rearrange

from fla.modules import GroupNorm
from fla.modules.activations import ACT2FN
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6

if TYPE_CHECKING:
    from fla.models.utils import Cache


class RWKV6Attention(nn.Module):

    def __init__(
        self,
        mode: str = 'chunk',
        hidden_size: int = 1024,
        expand_k: float = 0.5,
        expand_v: float = 1.0,
        num_heads: int = 4,
        gate_fn: str = 'swish',
        proj_low_rank_dim: int = 32,
        gate_low_rank_dim: int = 64,
        fuse_norm: bool = True,
        elementwise_affine: Optional[bool] = True,
        norm_eps: float = 1e-5,
        layer_idx: int = None,
        **kwargs
    ) -> RWKV6Attention:
        super().__init__()

        self.mode = mode
        self.hidden_size = hidden_size
        self.expand_k = expand_k
        self.expand_v = expand_v
        self.num_heads = num_heads
        self.proj_low_rank_dim = proj_low_rank_dim
        self.gate_low_rank_dim = gate_low_rank_dim

        self.key_dim = int(hidden_size * expand_k)
        self.value_dim = int(hidden_size * expand_v)
        self.layer_idx = layer_idx

        assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
        assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
        assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"

        self.head_k_dim = self.key_dim // num_heads
        self.head_v_dim = self.value_dim // num_heads

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        self.x_proj = nn.Sequential(
            LerpLinear(hidden_size, proj_low_rank_dim * 5),
            nn.Tanh(),
            nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=False)
        )
        self.x_bias = nn.Parameter(torch.zeros(5, hidden_size))

        self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
        self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
        self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
        self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
        self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
        self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_k_dim))

        # TODO: fuse GroupNorm and output gate
        self.g_norm = GroupNorm(self.num_heads, self.value_dim, elementwise_affine=elementwise_affine, bias=True, eps=norm_eps)
        self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
        self.gate_fn = ACT2FN[gate_fn]

        self.apply(self._initialize_weights)

    def _initialize_weights(self, module: nn.Module):
        if getattr(module, "_is_hf_initialized", False):
            return
        if isinstance(module, nn.Linear):
            nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        if isinstance(module, nn.Parameter):
            nn.init.xavier_uniform_(module, gain=2 ** -2.5)
        module._is_hf_initialized = True

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        **kwargs
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        batch_size, seq_len, hidden_size = hidden_states.shape
        # launching the triton kernel for just one token will actually be slower
        mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode

        last_state = None
        if past_key_values is not None and len(past_key_values) > self.layer_idx:
            last_state = past_key_values[self.layer_idx]

        if attention_mask is not None:
            hidden_states = hidden_states.mul_(attention_mask[:, -hidden_states.shape[-2]:, None])
        if hidden_states.shape[1] == 1 and last_state is not None:
            shifted = last_state['conv_state'].unsqueeze(1)
        else:
            shifted = self.time_shift(hidden_states)
            if last_state is not None:
                shifted[:, 0] = last_state['conv_state']

        delta = shifted - hidden_states
        x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
        x = torch.einsum('b t n r, h n r-> b t n h', self.x_proj[1](x), self.x_proj[2].weight.view(hidden_size, 5, -1))

        r, w, k, v, g = x.add_(self.x_bias).unbind(-2)
        r = self.r_proj(hidden_states, r, delta)
        w = self.w_proj(hidden_states, w, delta)
        k = self.k_proj(hidden_states, k, delta)
        v = self.v_proj(hidden_states, v, delta)
        g = self.g_proj(hidden_states, g, delta)

        # dealing with left-padding
        if attention_mask is not None:
            v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
        r, w, k = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim), (r, w, k))
        v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
        w = -torch.exp(w)
        u = self.bonus

        recurrent_state = last_state['recurrent_state'] if last_state is not None else None
        cu_seqlens = kwargs.get('cu_seqlens', None)
        if mode == 'fused_recurrent':
            o, recurrent_state = fused_recurrent_rwkv6(
                r=r,
                k=k,
                v=v,
                w=w,
                u=u,
                scale=1.,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                head_first=False
            )
        elif mode == 'chunk':
            o, recurrent_state = chunk_rwkv6(
                q=r,
                k=k,
                v=v,
                g=w,
                u=u,
                scale=1.,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                head_first=False
            )
        else:
            raise NotImplementedError(f"Not supported mode `{mode}`.")

        if past_key_values is not None:
            past_key_values.update(
                recurrent_state=recurrent_state,
                conv_state=hidden_states[:, -1],
                layer_idx=self.layer_idx,
                offset=r.shape[2]
            )

        o = self.g_norm(rearrange(o, '... h d -> ... (h d)')) * self.gate_fn(g)
        o = self.o_proj(o)

        return o, None, past_key_values


class LoRA(nn.Module):

    def __init__(
        self,
        input_dim: int,
        output_dim: int,
        low_rank_dim: int,
        bias: Optional[bool] = True,
        activation: Optional[str] = 'tanh'
    ):
        super().__init__()

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.low_rank_dim = low_rank_dim
        self.bias = bias

        if activation is None:
            self.activation = nn.Identity()
        elif activation == 'sigmoid':
            self.activation = nn.Sigmoid()
        elif activation == 'tanh':
            self.activation = nn.Tanh()
        elif activation == 'relu':
            self.activation = nn.ReLU()
        else:
            raise ValueError(f"Not supported activation `{activation}`.")

        self.lora = nn.Sequential(
            nn.Linear(input_dim, low_rank_dim, bias=False),
            self.activation,
            nn.Linear(low_rank_dim, output_dim, bias=bias)
        )

    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}("
        s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
        if not self.bias:
            s += f", bias={self.bias}"
        s += ")"
        return s

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lora(x)


class LerpLinear(nn.Module):

    def __init__(
        self,
        input_dim: int,
        output_dim: int,
        low_rank_dim: Optional[int] = None
    ):
        super().__init__()

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.low_rank_dim = low_rank_dim

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        if low_rank_dim is None:
            self.linear = nn.Linear(input_dim, output_dim, bias=False)
        else:
            self.linear = LoRA(input_dim, output_dim, low_rank_dim)
        self.mu = nn.Parameter(torch.zeros(input_dim))

    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
        if self.low_rank_dim is not None:
            s += f", low_rank_dim={self.low_rank_dim}"
        s += ")"
        return s

    def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
        if delta is None:
            shifted = self.time_shift(x)
            if len(shifted.shape) == 2:
                shifted = shifted.unsqueeze(1)
            delta = shifted - x
        return self.linear(x + delta * self.mu)


class DDLerpLinear(nn.Module):

    def __init__(
        self,
        input_dim: int,
        output_dim: int,
        low_rank_dim: Optional[int] = None
    ):
        super().__init__()

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.low_rank_dim = low_rank_dim

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        if low_rank_dim is None:
            self.linear = nn.Linear(input_dim, output_dim, bias=False)
        else:
            self.linear = LoRA(input_dim, output_dim, low_rank_dim)

    def __repr__(self) -> str:
        s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
        if self.low_rank_dim is not None:
            s += f", low_rank_dim={self.low_rank_dim}"
        s += ")"
        return s

    def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
        if delta is None:
            shifted = self.time_shift(x)
            if len(shifted.shape) == 2:
                shifted = shifted.unsqueeze(1)
            delta = shifted - x
        return self.linear(x + delta * mu)