File size: 8,882 Bytes
4135502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

from __future__ import annotations

import warnings
from typing import TYPE_CHECKING, Dict, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from fla.modules import RMSNorm, ShortConvolution
from fla.modules.feature_map import ReLUFeatureMap, SwishFeatureMap, T2RFeatureMap
from fla.modules.layernorm import rms_norm_linear
from fla.ops.gsa import chunk_gsa, fused_recurrent_gsa

if TYPE_CHECKING:
    from transformers.processing_utils import Unpack

    from fla.models.utils import Cache


class GatedSlotAttention(nn.Module):

    def __init__(
        self,
        mode: str = 'chunk',
        hidden_size: int = 1024,
        expand_k: float = 1.,
        expand_v: float = 1.,
        num_heads: int = 4,
        num_kv_heads: Optional[int] = None,
        use_short_conv: bool = False,
        conv_size: int = 4,
        conv_bias: bool = False,
        num_slots: Optional[int] = None,
        elementwise_affine: Optional[bool] = True,
        norm_eps: float = 1e-5,
        gate_logit_normalizer: int = 8,
        feature_map: str = 'swish',
        use_output_gate: bool = False,
        use_norm: bool = True,
        layer_idx: Optional[int] = None,
        scale: Optional[float] = 1.,
        **kwargs
    ) -> GatedSlotAttention:
        super().__init__()

        self.mode = mode
        self.hidden_size = hidden_size
        self.expand_k = expand_k
        self.expand_v = expand_v
        self.num_heads = num_heads
        self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
        self.num_kv_groups = self.num_heads // self.num_kv_heads
        self.key_dim = int(hidden_size * expand_k)
        self.value_dim = int(hidden_size * expand_v)
        self.key_dim_per_group = self.key_dim // self.num_kv_groups
        self.value_dim_per_group = self.value_dim // self.num_kv_groups
        self.head_k_dim = self.key_dim // self.num_heads
        self.head_v_dim = self.value_dim // self.num_heads

        self.use_short_conv = use_short_conv
        self.conv_size = conv_size
        self.conv_bias = conv_bias

        self.gate_logit_normalizer = gate_logit_normalizer

        self.use_output_gate = use_output_gate
        self.use_norm = use_norm
        self.scale = scale

        if num_slots is None:
            num_slots = self.head_k_dim
        self.num_slots = num_slots

        self.layer_idx = layer_idx

        if layer_idx is None:
            warnings.warn(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.register_module('feature_map', None)
        if feature_map == 'swish':
            self.feature_map = SwishFeatureMap()
        elif feature_map == 'relu':
            self.feature_map = ReLUFeatureMap()
        elif feature_map == 't2r':
            self.feature_map = T2RFeatureMap(self.head_k_dim, self.head_k_dim)
        else:
            raise NotImplementedError(f"Feature map `{feature_map}` is not supported now.")

        self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
        self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)

        if use_short_conv:
            self.conv_size = conv_size
            self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
            self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
            self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')

        self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps)
        self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        **kwargs: Unpack[Dict]
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        # launching the triton kernel for just one token will actually be slower
        mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode

        last_state = None
        if past_key_values is not None and len(past_key_values) > self.layer_idx:
            last_state = past_key_values[self.layer_idx]

        cu_seqlens = kwargs.get('cu_seqlens', None)
        if self.use_short_conv:
            conv_state_q, conv_state_k, conv_state_v = None, None, None
            if last_state is not None:
                conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
            conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
            q, conv_state_q = self.q_conv1d(
                x=self.q_proj(hidden_states),
                mask=conv_mask,
                cache=conv_state_q,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens
            )
            k, conv_state_k = self.k_conv1d(
                x=self.k_proj(hidden_states),
                mask=conv_mask,
                cache=conv_state_k,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens
            )
            v, conv_state_v = self.v_conv1d(
                x=self.v_proj(hidden_states),
                mask=conv_mask,
                cache=conv_state_v,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens
            )
        else:
            q = self.q_proj(hidden_states)
            k = self.k_proj(hidden_states)
            v = self.v_proj(hidden_states)
        f = self.f_proj(hidden_states)

        q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
        k = rearrange(k, 'b t (h d) -> b t h d', d=self.head_k_dim)
        v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
        f = rearrange(f, 'b t (h m) -> b t h m', m=self.num_slots)

        if self.feature_map is not None:
            q, k = map(lambda x: self.feature_map(x), (q, k))
        v = F.silu(v)

        f = F.logsigmoid(f) / self.gate_logit_normalizer
        s = (1 - f.exp()).to(f.dtype)
        # dealing with left-padding
        if attention_mask is not None:
            s = s.mul_(attention_mask[:, -s.shape[1]:, None, None])
            v = v.mul_(attention_mask[:, -v.shape[1]:, None, None])

        recurrent_state = last_state['recurrent_state'] if last_state is not None else None
        if mode == 'fused_recurrent':
            o, recurrent_state = fused_recurrent_gsa(
                q=q,
                k=k,
                v=v,
                s=s,
                g=f,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                scale=self.scale,
                cu_seqlens=cu_seqlens,
                head_first=False
            )
        elif mode == 'chunk':
            o, recurrent_state = chunk_gsa(
                q=q,
                k=k,
                v=v,
                s=s,
                g=f,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                scale=self.scale,
                cu_seqlens=cu_seqlens,
                head_first=False
            )
        else:
            raise NotImplementedError(f"Not supported mode `{mode}`.")

        if past_key_values is not None:
            past_key_values.update(
                recurrent_state=recurrent_state,
                conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
                layer_idx=self.layer_idx,
                offset=q.shape[1]
            )

        o = rearrange(o, 'b t h d -> b t (h d)')
        o = rms_norm_linear(F.silu(o), self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
        return o, None, past_key_values

    def state_size(self, *args, **kwargs) -> int:
        return 2 * self.num_slots * self.hidden_size