File size: 11,499 Bytes
4135502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
from __future__ import annotations
from typing import TYPE_CHECKING, Dict, Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
from fla.models.utils import Cache
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
class DeltaNet(nn.Module):
r"""
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
Args:
mode (str, Optional):
Which DeltaNet kernel to use.
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 1.0.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
use_beta (bool, Optional):
Whether to use beta. Default: `True`.
use_gate (bool, Optional):
Whether to use output gate. Default: `False`.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `True`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
allow_neg_eigval (bool, Optional):
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
layer_idx (int, Optional):
The index of the layer. Default: None.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
qk_activation (str, Optional):
The activation function for the query and key. Default: `silu`.
qk_norm (str, Optional):
The normalization method for the query and key. Default: `l2`.
"""
def __init__(
self,
mode: str = 'chunk',
d_model: int = None,
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 1.0,
num_heads: int = 4,
use_beta: bool = True,
use_gate: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
allow_neg_eigval: bool = False,
layer_idx: int = None,
qk_activation: str = 'silu',
qk_norm: str = 'l2',
norm_eps: float = 1e-5,
**kwargs
) -> DeltaNet:
super().__init__()
self.mode = mode
self.qk_activation = qk_activation
self.qk_norm = qk_norm
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
assert self.qk_norm in ['l2', 'sum']
if d_model is not None:
hidden_size = d_model
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.allow_neg_eigval = allow_neg_eigval
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.head_k_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.layer_idx = layer_idx
self.silu = nn.SiLU()
if mode == 'fused_chunk':
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.use_beta = use_beta
if self.use_beta:
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
if use_short_conv:
self.conv_size = conv_size
self.q_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu' if qk_activation == 'silu' else None
)
self.k_conv1d = ShortConvolution(
hidden_size=self.key_dim,
kernel_size=conv_size,
activation='silu' if qk_activation == 'silu' else None
)
self.v_conv1d = ShortConvolution(
hidden_size=self.value_dim,
kernel_size=conv_size,
activation='silu'
)
else:
raise UserWarning(
"ShortConvolution is crucial to the performance. "
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
)
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
else:
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[Dict]
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if attention_mask is not None:
assert len(attention_mask.shape) == 2, (
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
"for padding purposes (0 indicating padding). "
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
)
# change to inference mode.
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
last_state = None
if past_key_values is not None and len(past_key_values) > self.layer_idx:
last_state = past_key_values[self.layer_idx]
cu_seqlens = kwargs.get('cu_seqlens', None)
if self.use_short_conv:
conv_state_q, conv_state_k, conv_state_v = None, None, None
if last_state is not None:
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
q, conv_state_q = self.q_conv1d(
x=self.q_proj(hidden_states),
mask=conv_mask,
cache=conv_state_q,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
k, conv_state_k = self.k_conv1d(
x=self.k_proj(hidden_states),
mask=conv_mask,
cache=conv_state_k,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
v, conv_state_v = self.v_conv1d(
x=self.v_proj(hidden_states),
mask=conv_mask,
cache=conv_state_v,
output_final_state=use_cache,
cu_seqlens=cu_seqlens
)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
if self.qk_activation == 'silu':
q, k = self.silu(q), self.silu(k)
v = self.silu(self.v_proj(hidden_states))
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
if self.qk_activation != 'silu':
if self.qk_activation == 'relu':
q, k = q.relu(), k.relu()
elif self.qk_activation == 'elu':
q, k = elu_p1(q), elu_p1(k)
elif self.qk_activation == 'identity':
pass
else:
raise NotImplementedError
if self.qk_norm == 'sum':
q = sum_norm(q).to(q)
k = sum_norm(k).to(k)
if self.use_beta:
beta = self.b_proj(hidden_states).sigmoid()
else:
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
if self.allow_neg_eigval:
beta = beta * 2.
# dealing with padding
if attention_mask is not None:
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False,
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
)
elif mode == 'chunk':
o, recurrent_state = chunk_delta_rule(
q=q,
k=k,
v=v,
beta=beta,
initial_state=recurrent_state,
output_final_state=use_cache,
cu_seqlens=cu_seqlens,
head_first=False,
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update(
recurrent_state=recurrent_state,
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
layer_idx=self.layer_idx,
offset=q.shape[1]
)
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
o = self.o_norm(o, g)
else:
o = self.o_norm(o)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
return o, None, past_key_values
|