File size: 11,499 Bytes
4135502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang

from __future__ import annotations

from typing import TYPE_CHECKING, Dict, Optional, Tuple

import torch
import torch.nn as nn
from einops import rearrange
from torch.nn import functional as F

from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule

if TYPE_CHECKING:
    from transformers.processing_utils import Unpack

    from fla.models.utils import Cache


def elu_p1(x):
    return (F.elu(x, 1., False) + 1.).to(x)


def sum_norm(x):
    return (x / x.sum(-1, keepdim=True)).to(x)


class DeltaNet(nn.Module):
    r"""
    The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484).  # noqa:
    DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa

    Args:
        mode (str, Optional):
            Which DeltaNet kernel to use.
            Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
            Default: `chunk`.
        hidden_size (int, Optional):
            The hidden size of the input. Default: 1024.
        expand_k (float, Optional):
            The expansion ratio for the key dim. Default: 1.0.
        expand_v (float, Optional):
            The expansion ratio for the value dim. Default: 1.0.
        num_heads (int, Optional):
            The number of heads. Default: 4.
        use_beta (bool, Optional):
            Whether to use beta. Default: `True`.
        use_gate (bool, Optional):
            Whether to use output gate. Default: `False`.
        use_short_conv (bool, Optional):
            Whether to use short convolutions. Default: `True`.
        conv_size (int, Optional):
            The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
        conv_bias (bool, Optional):
            Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
        allow_neg_eigval (bool, Optional):
            Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
            See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
        layer_idx (int, Optional):
            The index of the layer. Default: None.
        norm_eps (float, Optional):
            The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
        qk_activation (str, Optional):
            The activation function for the query and key. Default: `silu`.
        qk_norm (str, Optional):
            The normalization method for the query and key. Default: `l2`.
    """

    def __init__(
        self,
        mode: str = 'chunk',
        d_model: int = None,
        hidden_size: int = 1024,
        expand_k: float = 1.0,
        expand_v: float = 1.0,
        num_heads: int = 4,
        use_beta: bool = True,
        use_gate: bool = False,
        use_short_conv: bool = True,
        conv_size: int = 4,
        conv_bias: bool = False,
        allow_neg_eigval: bool = False,
        layer_idx: int = None,
        qk_activation: str = 'silu',
        qk_norm: str = 'l2',
        norm_eps: float = 1e-5,
        **kwargs
    ) -> DeltaNet:
        super().__init__()

        self.mode = mode
        self.qk_activation = qk_activation
        self.qk_norm = qk_norm

        assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
        assert self.qk_norm in ['l2', 'sum']

        if d_model is not None:
            hidden_size = d_model
        self.hidden_size = hidden_size
        self.expand_k = expand_k
        self.expand_v = expand_v
        self.num_heads = num_heads
        self.use_gate = use_gate
        self.use_short_conv = use_short_conv
        self.conv_size = conv_size
        self.conv_bias = conv_bias
        self.allow_neg_eigval = allow_neg_eigval

        self.key_dim = int(hidden_size * expand_k)
        self.value_dim = int(hidden_size * expand_v)
        self.head_k_dim = self.key_dim // num_heads
        self.head_v_dim = self.value_dim // num_heads
        self.layer_idx = layer_idx

        self.silu = nn.SiLU()
        if mode == 'fused_chunk':
            raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
        assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
        assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
        assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"

        self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
        self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)

        self.use_beta = use_beta
        if self.use_beta:
            self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
        if use_short_conv:
            self.conv_size = conv_size
            self.q_conv1d = ShortConvolution(
                hidden_size=self.key_dim,
                kernel_size=conv_size,
                activation='silu' if qk_activation == 'silu' else None
            )
            self.k_conv1d = ShortConvolution(
                hidden_size=self.key_dim,
                kernel_size=conv_size,
                activation='silu' if qk_activation == 'silu' else None
            )
            self.v_conv1d = ShortConvolution(
                hidden_size=self.value_dim,
                kernel_size=conv_size,
                activation='silu'
            )
        else:
            raise UserWarning(
                "ShortConvolution is crucial to the performance. "
                "Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
            )
        if use_gate:
            self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
            self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
        else:
            self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)

        self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        **kwargs: Unpack[Dict]
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        # change to inference mode.
        mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode

        last_state = None
        if past_key_values is not None and len(past_key_values) > self.layer_idx:
            last_state = past_key_values[self.layer_idx]

        cu_seqlens = kwargs.get('cu_seqlens', None)
        if self.use_short_conv:
            conv_state_q, conv_state_k, conv_state_v = None, None, None
            if last_state is not None:
                conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
            conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
            q, conv_state_q = self.q_conv1d(
                x=self.q_proj(hidden_states),
                mask=conv_mask,
                cache=conv_state_q,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens
            )
            k, conv_state_k = self.k_conv1d(
                x=self.k_proj(hidden_states),
                mask=conv_mask,
                cache=conv_state_k,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens
            )
            v, conv_state_v = self.v_conv1d(
                x=self.v_proj(hidden_states),
                mask=conv_mask,
                cache=conv_state_v,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens
            )
        else:
            q = self.q_proj(hidden_states)
            k = self.k_proj(hidden_states)
            if self.qk_activation == 'silu':
                q, k = self.silu(q), self.silu(k)
            v = self.silu(self.v_proj(hidden_states))

        q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
        v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
        if self.qk_activation != 'silu':
            if self.qk_activation == 'relu':
                q, k = q.relu(), k.relu()
            elif self.qk_activation == 'elu':
                q, k = elu_p1(q), elu_p1(k)
            elif self.qk_activation == 'identity':
                pass
            else:
                raise NotImplementedError

        if self.qk_norm == 'sum':
            q = sum_norm(q).to(q)
            k = sum_norm(k).to(k)

        if self.use_beta:
            beta = self.b_proj(hidden_states).sigmoid()
        else:
            beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])

        if self.allow_neg_eigval:
            beta = beta * 2.

        # dealing with padding
        if attention_mask is not None:
            beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])

        recurrent_state = last_state['recurrent_state'] if last_state is not None else None
        if mode == 'fused_recurrent':
            o, recurrent_state = fused_recurrent_delta_rule(
                q=q,
                k=k,
                v=v,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                head_first=False,
                use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
            )
        elif mode == 'chunk':
            o, recurrent_state = chunk_delta_rule(
                q=q,
                k=k,
                v=v,
                beta=beta,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                cu_seqlens=cu_seqlens,
                head_first=False,
                use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
            )
        else:
            raise NotImplementedError(f"Not supported mode `{mode}`.")

        if past_key_values is not None:
            past_key_values.update(
                recurrent_state=recurrent_state,
                conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
                layer_idx=self.layer_idx,
                offset=q.shape[1]
            )

        if self.use_gate:
            g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
            o = self.o_norm(o, g)
        else:
            o = self.o_norm(o)
        o = rearrange(o, 'b t h d -> b t (h d)')
        o = self.o_proj(o)

        return o, None, past_key_values