|
--- |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: 'Hello!' |
|
example_title: Hello world |
|
group: Python |
|
library_name: transformers |
|
--- |
|
|
|
This model is randomly initialized, using the config from [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) but with smaller size. |
|
Note the model is in float16. |
|
|
|
Codes: |
|
```python |
|
import transformers |
|
import torch |
|
import os |
|
from huggingface_hub import create_repo, upload_folder |
|
|
|
source_model_id = 'databricks/dbrx-instruct' |
|
save_path = '/tmp/yujiepan/dbrx-tiny-random' |
|
repo_id = 'yujiepan/dbrx-tiny-random' |
|
|
|
config = transformers.AutoConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True) |
|
config.attn_config.kv_n_heads = 2 |
|
config.d_model = 4 |
|
config.ffn_config.ffn_hidden_size = 8 |
|
config.n_heads = 4 |
|
config.n_layers = 2 |
|
|
|
model = transformers.AutoModelForCausalLM.from_config( |
|
config, trust_remote_code=True) |
|
model = model.half() |
|
model.save_pretrained(save_path) |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
source_model_id, trust_remote_code=True) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
result = transformers.pipelines.pipeline( |
|
'text-generation', |
|
model=model.float(), tokenizer=tokenizer)('Hello') |
|
print(result) |
|
|
|
os.system(f'ls -alh {save_path}') |
|
create_repo(repo_id, exist_ok=True) |
|
upload_folder(repo_id=repo_id, folder_path=save_path) |
|
``` |