llama-3-8B-lora-sft
This model is a fine-tuned version of ytcheng/llama-3-8B-pretrain on the sm_question dataset. It achieves the following results on the evaluation set:
- Loss: 1.9779
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5512 | 0.1461 | 200 | 2.5884 |
2.3861 | 0.2923 | 400 | 2.4773 |
2.5938 | 0.4384 | 600 | 2.3990 |
2.3384 | 0.5845 | 800 | 2.3486 |
2.3232 | 0.7307 | 1000 | 2.3094 |
2.2603 | 0.8768 | 1200 | 2.2487 |
2.1007 | 1.0229 | 1400 | 2.2064 |
2.0635 | 1.1691 | 1600 | 2.1665 |
2.1212 | 1.3152 | 1800 | 2.1353 |
2.038 | 1.4613 | 2000 | 2.0880 |
1.9656 | 1.6075 | 2200 | 2.0618 |
2.0285 | 1.7536 | 2400 | 2.0393 |
1.9932 | 1.8997 | 2600 | 2.0270 |
1.6477 | 2.0458 | 2800 | 2.0164 |
1.5985 | 2.1920 | 3000 | 2.0024 |
1.8708 | 2.3381 | 3200 | 1.9918 |
1.8533 | 2.4842 | 3400 | 1.9873 |
1.7357 | 2.6304 | 3600 | 1.9813 |
1.8041 | 2.7765 | 3800 | 1.9782 |
1.7998 | 2.9226 | 4000 | 1.9780 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ytcheng/llama-3-8B-lora-sft
Base model
ytcheng/llama-3-8B-pretrain