Meta-Llama-3-8B-Instruct-lora-commonsense
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8882
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1039 | 0.1503 | 200 | 1.0393 |
1.0921 | 0.3006 | 400 | 1.0156 |
1.0651 | 0.4510 | 600 | 1.0024 |
1.0796 | 0.6013 | 800 | 0.9864 |
1.0529 | 0.7516 | 1000 | 0.9797 |
1.0396 | 0.9019 | 1200 | 0.9657 |
0.9997 | 1.0522 | 1400 | 0.9600 |
0.9962 | 1.2026 | 1600 | 0.9483 |
0.9833 | 1.3529 | 1800 | 0.9364 |
0.9805 | 1.5032 | 2000 | 0.9252 |
0.9747 | 1.6535 | 2200 | 0.9198 |
0.9509 | 1.8038 | 2400 | 0.9072 |
0.9481 | 1.9542 | 2600 | 0.9021 |
0.9091 | 2.1045 | 2800 | 0.9018 |
0.8928 | 2.2548 | 3000 | 0.8929 |
0.8949 | 2.4051 | 3200 | 0.8905 |
0.9086 | 2.5554 | 3400 | 0.8908 |
0.9014 | 2.7057 | 3600 | 0.8885 |
0.8789 | 2.8561 | 3800 | 0.8882 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
Model tree for yspkm/Meta-Llama-3-8B-Instruct-lora-commonsense
Base model
meta-llama/Meta-Llama-3-8B-Instruct