all-MiniLM-L6-v6-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'basic choker',
    'unisex sweatshirt',
    'unisex sweatshirt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 15
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
0.1721 100 10.8697 -
0.3442 200 9.1125 -
0.5164 300 6.8873 -
0.6885 400 3.1124 -
0.8606 500 1.0882 -
1.0327 600 0.869 -
1.2048 700 0.6952 -
1.3769 800 0.5522 -
1.5491 900 0.5184 -
1.7212 1000 0.3996 -
1.8933 1100 0.6316 -
2.0654 1200 0.5352 -
2.2375 1300 0.3731 -
2.4096 1400 0.3376 -
2.5818 1500 0.597 -
2.7539 1600 0.5737 -
2.9260 1700 0.7107 -
3.0981 1800 0.4356 -
3.2702 1900 0.5581 -
3.4423 2000 0.2012 -
3.6145 2100 0.3906 -
3.7866 2200 0.5386 -
3.9587 2300 0.2624 -
4.1308 2400 0.3573 -
4.3029 2500 0.4798 -
4.4750 2600 0.2465 -
4.6472 2700 0.3482 -
4.8193 2800 0.1915 -
4.9914 2900 0.4617 -
5.1635 3000 0.2874 -
5.3356 3100 0.4636 -
5.5077 3200 0.1344 -
5.6799 3300 0.3615 -
5.8520 3400 0.309 -
6.0241 3500 0.1883 -
6.1962 3600 0.4029 -
6.3683 3700 0.2082 -
6.5404 3800 0.1333 -
6.7126 3900 0.1509 -
6.8847 4000 0.6264 -
7.0568 4100 0.2177 -
7.2289 4200 0.1957 -
7.4010 4300 0.2887 -
7.5731 4400 0.2271 -
7.7453 4500 0.3486 -
7.9174 4600 0.4429 -
8.0895 4700 0.4398 -
8.2616 4800 0.31 -
8.4337 4900 0.2045 -
8.6059 5000 0.2583 0.2371
8.7780 5100 0.2774 -
8.9501 5200 0.1902 -
9.1222 5300 0.3058 -
9.2943 5400 0.3742 -
9.4664 5500 0.2972 -
9.6386 5600 0.3084 -
9.8107 5700 0.1215 -
9.9828 5800 0.1876 -
10.1549 5900 0.1702 -
10.3270 6000 0.2506 -
10.4991 6100 0.2852 -
10.6713 6200 0.2354 -
10.8434 6300 0.214 -
11.0155 6400 0.3815 -
11.1876 6500 0.0803 -
11.3597 6600 0.1941 -
11.5318 6700 0.1576 -
11.7040 6800 0.2911 -
11.8761 6900 0.4913 -
12.0482 7000 0.2759 -
12.2203 7100 0.2928 -
12.3924 7200 0.2181 -
12.5645 7300 0.1286 -
12.7367 7400 0.3342 -
12.9088 7500 0.1577 -
13.0809 7600 0.2578 -
13.2530 7700 0.2844 -
13.4251 7800 0.0917 -
13.5972 7900 0.2617 -
13.7694 8000 0.3021 -
13.9415 8100 0.1036 -
14.1136 8200 0.5471 -
14.2857 8300 0.2395 -
14.4578 8400 0.2664 -
14.6299 8500 0.2697 -
14.8021 8600 0.1569 -
14.9742 8700 0.116 -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings},
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for youssefkhalil320/all-MiniLM-L6-v6-pair_score

Finetuned
(279)
this model