all-MiniLM-L6-v6-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'basic choker',
'unisex sweatshirt',
'unisex sweatshirt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 15warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.1721 | 100 | 10.8697 | - |
0.3442 | 200 | 9.1125 | - |
0.5164 | 300 | 6.8873 | - |
0.6885 | 400 | 3.1124 | - |
0.8606 | 500 | 1.0882 | - |
1.0327 | 600 | 0.869 | - |
1.2048 | 700 | 0.6952 | - |
1.3769 | 800 | 0.5522 | - |
1.5491 | 900 | 0.5184 | - |
1.7212 | 1000 | 0.3996 | - |
1.8933 | 1100 | 0.6316 | - |
2.0654 | 1200 | 0.5352 | - |
2.2375 | 1300 | 0.3731 | - |
2.4096 | 1400 | 0.3376 | - |
2.5818 | 1500 | 0.597 | - |
2.7539 | 1600 | 0.5737 | - |
2.9260 | 1700 | 0.7107 | - |
3.0981 | 1800 | 0.4356 | - |
3.2702 | 1900 | 0.5581 | - |
3.4423 | 2000 | 0.2012 | - |
3.6145 | 2100 | 0.3906 | - |
3.7866 | 2200 | 0.5386 | - |
3.9587 | 2300 | 0.2624 | - |
4.1308 | 2400 | 0.3573 | - |
4.3029 | 2500 | 0.4798 | - |
4.4750 | 2600 | 0.2465 | - |
4.6472 | 2700 | 0.3482 | - |
4.8193 | 2800 | 0.1915 | - |
4.9914 | 2900 | 0.4617 | - |
5.1635 | 3000 | 0.2874 | - |
5.3356 | 3100 | 0.4636 | - |
5.5077 | 3200 | 0.1344 | - |
5.6799 | 3300 | 0.3615 | - |
5.8520 | 3400 | 0.309 | - |
6.0241 | 3500 | 0.1883 | - |
6.1962 | 3600 | 0.4029 | - |
6.3683 | 3700 | 0.2082 | - |
6.5404 | 3800 | 0.1333 | - |
6.7126 | 3900 | 0.1509 | - |
6.8847 | 4000 | 0.6264 | - |
7.0568 | 4100 | 0.2177 | - |
7.2289 | 4200 | 0.1957 | - |
7.4010 | 4300 | 0.2887 | - |
7.5731 | 4400 | 0.2271 | - |
7.7453 | 4500 | 0.3486 | - |
7.9174 | 4600 | 0.4429 | - |
8.0895 | 4700 | 0.4398 | - |
8.2616 | 4800 | 0.31 | - |
8.4337 | 4900 | 0.2045 | - |
8.6059 | 5000 | 0.2583 | 0.2371 |
8.7780 | 5100 | 0.2774 | - |
8.9501 | 5200 | 0.1902 | - |
9.1222 | 5300 | 0.3058 | - |
9.2943 | 5400 | 0.3742 | - |
9.4664 | 5500 | 0.2972 | - |
9.6386 | 5600 | 0.3084 | - |
9.8107 | 5700 | 0.1215 | - |
9.9828 | 5800 | 0.1876 | - |
10.1549 | 5900 | 0.1702 | - |
10.3270 | 6000 | 0.2506 | - |
10.4991 | 6100 | 0.2852 | - |
10.6713 | 6200 | 0.2354 | - |
10.8434 | 6300 | 0.214 | - |
11.0155 | 6400 | 0.3815 | - |
11.1876 | 6500 | 0.0803 | - |
11.3597 | 6600 | 0.1941 | - |
11.5318 | 6700 | 0.1576 | - |
11.7040 | 6800 | 0.2911 | - |
11.8761 | 6900 | 0.4913 | - |
12.0482 | 7000 | 0.2759 | - |
12.2203 | 7100 | 0.2928 | - |
12.3924 | 7200 | 0.2181 | - |
12.5645 | 7300 | 0.1286 | - |
12.7367 | 7400 | 0.3342 | - |
12.9088 | 7500 | 0.1577 | - |
13.0809 | 7600 | 0.2578 | - |
13.2530 | 7700 | 0.2844 | - |
13.4251 | 7800 | 0.0917 | - |
13.5972 | 7900 | 0.2617 | - |
13.7694 | 8000 | 0.3021 | - |
13.9415 | 8100 | 0.1036 | - |
14.1136 | 8200 | 0.5471 | - |
14.2857 | 8300 | 0.2395 | - |
14.4578 | 8400 | 0.2664 | - |
14.6299 | 8500 | 0.2697 | - |
14.8021 | 8600 | 0.1569 | - |
14.9742 | 8700 | 0.116 | - |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for youssefkhalil320/all-MiniLM-L6-v6-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2