all-MiniLM-L6-v11-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'semi polished candle holder',
'long lasting candle holder',
'ice cream',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
1.4755 | 100600 | 3.8748 |
1.4770 | 100700 | 4.053 |
1.4784 | 100800 | 3.9575 |
1.4799 | 100900 | 4.1901 |
1.4814 | 101000 | 4.0269 |
1.4828 | 101100 | 3.7069 |
1.4843 | 101200 | 4.1148 |
1.4858 | 101300 | 3.9824 |
1.4872 | 101400 | 3.7988 |
1.4887 | 101500 | 3.7947 |
1.4902 | 101600 | 4.0534 |
1.4916 | 101700 | 3.7761 |
1.4931 | 101800 | 4.237 |
1.4946 | 101900 | 4.4075 |
1.4960 | 102000 | 3.9308 |
1.4975 | 102100 | 3.7867 |
1.4990 | 102200 | 4.3526 |
1.5004 | 102300 | 4.1362 |
1.5019 | 102400 | 3.997 |
1.5034 | 102500 | 4.3269 |
1.5048 | 102600 | 3.9814 |
1.5063 | 102700 | 3.8537 |
1.5078 | 102800 | 3.9149 |
1.5092 | 102900 | 3.7611 |
1.5107 | 103000 | 3.7806 |
1.5122 | 103100 | 4.2381 |
1.5136 | 103200 | 4.0435 |
1.5151 | 103300 | 3.6451 |
1.5166 | 103400 | 3.8354 |
1.5180 | 103500 | 3.9206 |
1.5195 | 103600 | 3.9973 |
1.5210 | 103700 | 3.9566 |
1.5224 | 103800 | 4.0192 |
1.5239 | 103900 | 3.7938 |
1.5254 | 104000 | 4.2643 |
1.5268 | 104100 | 4.1637 |
1.5283 | 104200 | 4.0284 |
1.5298 | 104300 | 4.21 |
1.5312 | 104400 | 3.4641 |
1.5327 | 104500 | 3.6869 |
1.5342 | 104600 | 3.8448 |
1.5356 | 104700 | 4.2046 |
1.5371 | 104800 | 3.645 |
1.5386 | 104900 | 4.0126 |
1.5400 | 105000 | 3.8847 |
1.5415 | 105100 | 3.8365 |
1.5430 | 105200 | 4.185 |
1.5444 | 105300 | 4.1772 |
1.5459 | 105400 | 3.7761 |
1.5474 | 105500 | 3.9277 |
1.5488 | 105600 | 3.8262 |
1.5503 | 105700 | 3.9907 |
1.5518 | 105800 | 4.0857 |
1.5532 | 105900 | 4.2328 |
1.5547 | 106000 | 3.9554 |
1.5562 | 106100 | 3.8267 |
1.5576 | 106200 | 3.9999 |
1.5591 | 106300 | 4.1154 |
1.5606 | 106400 | 3.9688 |
1.5620 | 106500 | 4.0721 |
1.5635 | 106600 | 4.3463 |
1.5650 | 106700 | 3.6566 |
1.5664 | 106800 | 4.1804 |
1.5679 | 106900 | 3.7478 |
1.5694 | 107000 | 3.3921 |
1.5708 | 107100 | 3.6867 |
1.5723 | 107200 | 4.5457 |
1.5738 | 107300 | 3.6444 |
1.5752 | 107400 | 3.7478 |
1.5767 | 107500 | 3.7962 |
1.5782 | 107600 | 4.13 |
1.5796 | 107700 | 3.7226 |
1.5811 | 107800 | 3.7272 |
1.5826 | 107900 | 3.5184 |
1.5840 | 108000 | 4.0702 |
1.5855 | 108100 | 4.4565 |
1.5870 | 108200 | 3.6692 |
1.5884 | 108300 | 4.0094 |
1.5899 | 108400 | 3.7197 |
1.5914 | 108500 | 3.7295 |
1.5928 | 108600 | 3.5424 |
1.5943 | 108700 | 4.0009 |
1.5958 | 108800 | 3.9083 |
1.5972 | 108900 | 4.0579 |
1.5987 | 109000 | 3.8253 |
1.6002 | 109100 | 3.8134 |
1.6016 | 109200 | 3.9665 |
1.6031 | 109300 | 3.8888 |
1.6046 | 109400 | 3.966 |
1.6060 | 109500 | 4.1187 |
1.6075 | 109600 | 3.9186 |
1.6090 | 109700 | 3.6485 |
1.6104 | 109800 | 3.8329 |
1.6119 | 109900 | 3.824 |
1.6134 | 110000 | 3.501 |
1.6148 | 110100 | 3.8698 |
1.6163 | 110200 | 4.0928 |
1.6178 | 110300 | 3.7599 |
1.6192 | 110400 | 3.8688 |
1.6207 | 110500 | 3.5656 |
1.6222 | 110600 | 4.1954 |
1.6236 | 110700 | 3.9274 |
1.6251 | 110800 | 3.9158 |
1.6266 | 110900 | 3.7125 |
1.6280 | 111000 | 4.0304 |
1.6295 | 111100 | 3.5408 |
1.6310 | 111200 | 3.9439 |
1.6324 | 111300 | 3.7155 |
1.6339 | 111400 | 4.035 |
1.6354 | 111500 | 3.9391 |
1.6368 | 111600 | 3.8866 |
1.6383 | 111700 | 4.0672 |
1.6398 | 111800 | 4.1916 |
1.6412 | 111900 | 4.1134 |
1.6427 | 112000 | 4.3825 |
1.6442 | 112100 | 3.8469 |
1.6456 | 112200 | 3.984 |
1.6471 | 112300 | 4.0895 |
1.6486 | 112400 | 3.688 |
1.6500 | 112500 | 3.6982 |
1.6515 | 112600 | 3.6685 |
1.6530 | 112700 | 4.1674 |
1.6544 | 112800 | 4.0703 |
1.6559 | 112900 | 3.5716 |
1.6574 | 113000 | 3.9674 |
1.6588 | 113100 | 4.1678 |
1.6603 | 113200 | 3.9769 |
1.6618 | 113300 | 3.8312 |
1.6632 | 113400 | 3.8692 |
1.6647 | 113500 | 3.924 |
1.6662 | 113600 | 4.0122 |
1.6676 | 113700 | 4.0432 |
1.6691 | 113800 | 3.8391 |
1.6706 | 113900 | 4.4089 |
1.6720 | 114000 | 3.7079 |
1.6735 | 114100 | 3.4194 |
1.6750 | 114200 | 4.2441 |
1.6764 | 114300 | 3.7279 |
1.6779 | 114400 | 3.8588 |
1.6794 | 114500 | 3.8865 |
1.6808 | 114600 | 3.6613 |
1.6823 | 114700 | 3.8352 |
1.6838 | 114800 | 4.0586 |
1.6852 | 114900 | 3.7488 |
1.6867 | 115000 | 3.7452 |
1.6882 | 115100 | 3.6076 |
1.6896 | 115200 | 3.968 |
1.6911 | 115300 | 4.2497 |
1.6926 | 115400 | 3.9571 |
1.6940 | 115500 | 3.6752 |
1.6955 | 115600 | 3.642 |
1.6970 | 115700 | 3.9887 |
1.6984 | 115800 | 3.7685 |
1.6999 | 115900 | 3.8536 |
1.7014 | 116000 | 4.081 |
1.7028 | 116100 | 4.192 |
1.7043 | 116200 | 4.081 |
1.7058 | 116300 | 3.8161 |
1.7072 | 116400 | 3.8421 |
1.7087 | 116500 | 3.7503 |
1.7102 | 116600 | 3.7952 |
1.7116 | 116700 | 4.1302 |
1.7131 | 116800 | 3.7091 |
1.7146 | 116900 | 4.0009 |
1.7160 | 117000 | 3.5709 |
1.7175 | 117100 | 3.954 |
1.7190 | 117200 | 4.0199 |
1.7204 | 117300 | 3.5756 |
1.7219 | 117400 | 3.8475 |
1.7234 | 117500 | 3.7051 |
1.7248 | 117600 | 3.5641 |
1.7263 | 117700 | 3.925 |
1.7278 | 117800 | 3.807 |
1.7292 | 117900 | 3.9412 |
1.7307 | 118000 | 3.8442 |
1.7322 | 118100 | 3.6595 |
1.7336 | 118200 | 3.8921 |
1.7351 | 118300 | 3.7817 |
1.7366 | 118400 | 3.9047 |
1.7380 | 118500 | 3.571 |
1.7395 | 118600 | 3.7622 |
1.7410 | 118700 | 3.8685 |
1.7424 | 118800 | 3.9514 |
1.7439 | 118900 | 4.055 |
1.7454 | 119000 | 3.6103 |
1.7468 | 119100 | 4.0892 |
1.7483 | 119200 | 3.7731 |
1.7498 | 119300 | 3.8561 |
1.7512 | 119400 | 4.1297 |
1.7527 | 119500 | 4.1099 |
1.7542 | 119600 | 4.1831 |
1.7556 | 119700 | 3.8201 |
1.7571 | 119800 | 3.9437 |
1.7586 | 119900 | 3.9154 |
1.7600 | 120000 | 3.9049 |
1.7615 | 120100 | 3.4697 |
1.7630 | 120200 | 3.8302 |
1.7644 | 120300 | 3.8078 |
1.7659 | 120400 | 3.7894 |
1.7674 | 120500 | 3.9003 |
1.7688 | 120600 | 3.8005 |
1.7703 | 120700 | 3.6398 |
1.7718 | 120800 | 4.0086 |
1.7732 | 120900 | 3.8627 |
1.7747 | 121000 | 3.5175 |
1.7762 | 121100 | 3.7655 |
1.7776 | 121200 | 3.8143 |
1.7791 | 121300 | 4.1813 |
1.7806 | 121400 | 3.7133 |
1.7820 | 121500 | 3.5701 |
1.7835 | 121600 | 3.3709 |
1.7850 | 121700 | 3.8726 |
1.7864 | 121800 | 3.9624 |
1.7879 | 121900 | 3.8097 |
1.7894 | 122000 | 3.9329 |
1.7908 | 122100 | 3.6713 |
1.7923 | 122200 | 4.1905 |
1.7938 | 122300 | 3.881 |
1.7952 | 122400 | 3.7906 |
1.7967 | 122500 | 3.8061 |
1.7982 | 122600 | 4.0411 |
1.7996 | 122700 | 3.6913 |
1.8011 | 122800 | 4.3033 |
1.8026 | 122900 | 3.84 |
1.8040 | 123000 | 3.8916 |
1.8055 | 123100 | 3.8984 |
1.8070 | 123200 | 3.8142 |
1.8084 | 123300 | 3.5308 |
1.8099 | 123400 | 3.7902 |
1.8114 | 123500 | 3.9144 |
1.8128 | 123600 | 4.1585 |
1.8143 | 123700 | 3.7845 |
1.8158 | 123800 | 4.0398 |
1.8172 | 123900 | 3.7276 |
1.8187 | 124000 | 3.9387 |
1.8202 | 124100 | 3.3395 |
1.8216 | 124200 | 3.8677 |
1.8231 | 124300 | 3.7779 |
1.8246 | 124400 | 3.6872 |
1.8260 | 124500 | 3.8913 |
1.8275 | 124600 | 3.7367 |
1.8290 | 124700 | 4.3299 |
1.8304 | 124800 | 3.8683 |
1.8319 | 124900 | 3.896 |
1.8334 | 125000 | 4.0298 |
1.8348 | 125100 | 3.6089 |
1.8363 | 125200 | 3.5678 |
1.8378 | 125300 | 4.215 |
1.8392 | 125400 | 3.5253 |
1.8407 | 125500 | 3.8163 |
1.8422 | 125600 | 3.8711 |
1.8436 | 125700 | 3.9141 |
1.8451 | 125800 | 4.0036 |
1.8466 | 125900 | 3.4214 |
1.8480 | 126000 | 3.7861 |
1.8495 | 126100 | 3.7758 |
1.8510 | 126200 | 3.9433 |
1.8524 | 126300 | 3.5923 |
1.8539 | 126400 | 3.8646 |
1.8554 | 126500 | 4.4035 |
1.8568 | 126600 | 3.9414 |
1.8583 | 126700 | 3.7132 |
1.8598 | 126800 | 4.3201 |
1.8612 | 126900 | 3.5453 |
1.8627 | 127000 | 3.7816 |
1.8642 | 127100 | 3.6934 |
1.8656 | 127200 | 3.8439 |
1.8671 | 127300 | 3.6114 |
1.8686 | 127400 | 4.1551 |
1.8700 | 127500 | 4.0338 |
1.8715 | 127600 | 3.9158 |
1.8730 | 127700 | 3.7997 |
1.8744 | 127800 | 3.9272 |
1.8759 | 127900 | 3.6009 |
1.8774 | 128000 | 3.8861 |
1.8789 | 128100 | 3.7981 |
1.8803 | 128200 | 3.8183 |
1.8818 | 128300 | 3.975 |
1.8833 | 128400 | 3.4799 |
1.8847 | 128500 | 3.7114 |
1.8862 | 128600 | 3.9392 |
1.8877 | 128700 | 3.7769 |
1.8891 | 128800 | 3.809 |
1.8906 | 128900 | 3.9282 |
1.8921 | 129000 | 4.2751 |
1.8935 | 129100 | 3.8462 |
1.8950 | 129200 | 3.7266 |
1.8965 | 129300 | 3.9677 |
1.8979 | 129400 | 4.0947 |
1.8994 | 129500 | 3.7295 |
1.9009 | 129600 | 3.8264 |
1.9023 | 129700 | 3.8546 |
1.9038 | 129800 | 4.0043 |
1.9053 | 129900 | 3.7995 |
1.9067 | 130000 | 3.7738 |
1.9082 | 130100 | 3.7783 |
1.9097 | 130200 | 3.8013 |
1.9111 | 130300 | 3.8089 |
1.9126 | 130400 | 3.865 |
1.9141 | 130500 | 3.8448 |
1.9155 | 130600 | 3.8157 |
1.9170 | 130700 | 4.0972 |
1.9185 | 130800 | 3.6567 |
1.9199 | 130900 | 3.7441 |
1.9214 | 131000 | 4.0964 |
1.9229 | 131100 | 3.5458 |
1.9243 | 131200 | 4.0343 |
1.9258 | 131300 | 3.681 |
1.9273 | 131400 | 3.8044 |
1.9287 | 131500 | 3.9433 |
1.9302 | 131600 | 3.6754 |
1.9317 | 131700 | 4.3985 |
1.9331 | 131800 | 3.8511 |
1.9346 | 131900 | 4.1095 |
1.9361 | 132000 | 3.2248 |
1.9375 | 132100 | 4.2346 |
1.9390 | 132200 | 3.6429 |
1.9405 | 132300 | 3.9987 |
1.9419 | 132400 | 3.9853 |
1.9434 | 132500 | 3.7949 |
1.9449 | 132600 | 3.6875 |
1.9463 | 132700 | 3.4602 |
1.9478 | 132800 | 3.7481 |
1.9493 | 132900 | 4.1038 |
1.9507 | 133000 | 3.7001 |
1.9522 | 133100 | 3.6621 |
1.9537 | 133200 | 3.5483 |
1.9551 | 133300 | 3.7601 |
1.9566 | 133400 | 3.9289 |
1.9581 | 133500 | 3.8237 |
1.9595 | 133600 | 3.6393 |
1.9610 | 133700 | 3.8376 |
1.9625 | 133800 | 3.7313 |
1.9639 | 133900 | 3.7408 |
1.9654 | 134000 | 3.7284 |
1.9669 | 134100 | 3.7694 |
1.9683 | 134200 | 3.8033 |
1.9698 | 134300 | 3.7479 |
1.9713 | 134400 | 3.6453 |
1.9727 | 134500 | 4.1746 |
1.9742 | 134600 | 3.8442 |
1.9757 | 134700 | 3.8437 |
1.9771 | 134800 | 4.0413 |
1.9786 | 134900 | 3.6456 |
1.9801 | 135000 | 3.9108 |
1.9815 | 135100 | 3.617 |
1.9830 | 135200 | 3.7945 |
1.9845 | 135300 | 3.8036 |
1.9859 | 135400 | 4.0028 |
1.9874 | 135500 | 3.8012 |
1.9889 | 135600 | 3.7975 |
1.9903 | 135700 | 4.0858 |
1.9918 | 135800 | 3.7136 |
1.9933 | 135900 | 3.5602 |
1.9947 | 136000 | 3.6315 |
1.9962 | 136100 | 3.7648 |
1.9977 | 136200 | 3.7992 |
1.9991 | 136300 | 3.7614 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for youssefkhalil320/all-MiniLM-L6-v11-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2