all-MiniLM-L6-v11-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'semi polished candle holder',
    'long lasting candle holder',
    'ice cream',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
1.4755 100600 3.8748
1.4770 100700 4.053
1.4784 100800 3.9575
1.4799 100900 4.1901
1.4814 101000 4.0269
1.4828 101100 3.7069
1.4843 101200 4.1148
1.4858 101300 3.9824
1.4872 101400 3.7988
1.4887 101500 3.7947
1.4902 101600 4.0534
1.4916 101700 3.7761
1.4931 101800 4.237
1.4946 101900 4.4075
1.4960 102000 3.9308
1.4975 102100 3.7867
1.4990 102200 4.3526
1.5004 102300 4.1362
1.5019 102400 3.997
1.5034 102500 4.3269
1.5048 102600 3.9814
1.5063 102700 3.8537
1.5078 102800 3.9149
1.5092 102900 3.7611
1.5107 103000 3.7806
1.5122 103100 4.2381
1.5136 103200 4.0435
1.5151 103300 3.6451
1.5166 103400 3.8354
1.5180 103500 3.9206
1.5195 103600 3.9973
1.5210 103700 3.9566
1.5224 103800 4.0192
1.5239 103900 3.7938
1.5254 104000 4.2643
1.5268 104100 4.1637
1.5283 104200 4.0284
1.5298 104300 4.21
1.5312 104400 3.4641
1.5327 104500 3.6869
1.5342 104600 3.8448
1.5356 104700 4.2046
1.5371 104800 3.645
1.5386 104900 4.0126
1.5400 105000 3.8847
1.5415 105100 3.8365
1.5430 105200 4.185
1.5444 105300 4.1772
1.5459 105400 3.7761
1.5474 105500 3.9277
1.5488 105600 3.8262
1.5503 105700 3.9907
1.5518 105800 4.0857
1.5532 105900 4.2328
1.5547 106000 3.9554
1.5562 106100 3.8267
1.5576 106200 3.9999
1.5591 106300 4.1154
1.5606 106400 3.9688
1.5620 106500 4.0721
1.5635 106600 4.3463
1.5650 106700 3.6566
1.5664 106800 4.1804
1.5679 106900 3.7478
1.5694 107000 3.3921
1.5708 107100 3.6867
1.5723 107200 4.5457
1.5738 107300 3.6444
1.5752 107400 3.7478
1.5767 107500 3.7962
1.5782 107600 4.13
1.5796 107700 3.7226
1.5811 107800 3.7272
1.5826 107900 3.5184
1.5840 108000 4.0702
1.5855 108100 4.4565
1.5870 108200 3.6692
1.5884 108300 4.0094
1.5899 108400 3.7197
1.5914 108500 3.7295
1.5928 108600 3.5424
1.5943 108700 4.0009
1.5958 108800 3.9083
1.5972 108900 4.0579
1.5987 109000 3.8253
1.6002 109100 3.8134
1.6016 109200 3.9665
1.6031 109300 3.8888
1.6046 109400 3.966
1.6060 109500 4.1187
1.6075 109600 3.9186
1.6090 109700 3.6485
1.6104 109800 3.8329
1.6119 109900 3.824
1.6134 110000 3.501
1.6148 110100 3.8698
1.6163 110200 4.0928
1.6178 110300 3.7599
1.6192 110400 3.8688
1.6207 110500 3.5656
1.6222 110600 4.1954
1.6236 110700 3.9274
1.6251 110800 3.9158
1.6266 110900 3.7125
1.6280 111000 4.0304
1.6295 111100 3.5408
1.6310 111200 3.9439
1.6324 111300 3.7155
1.6339 111400 4.035
1.6354 111500 3.9391
1.6368 111600 3.8866
1.6383 111700 4.0672
1.6398 111800 4.1916
1.6412 111900 4.1134
1.6427 112000 4.3825
1.6442 112100 3.8469
1.6456 112200 3.984
1.6471 112300 4.0895
1.6486 112400 3.688
1.6500 112500 3.6982
1.6515 112600 3.6685
1.6530 112700 4.1674
1.6544 112800 4.0703
1.6559 112900 3.5716
1.6574 113000 3.9674
1.6588 113100 4.1678
1.6603 113200 3.9769
1.6618 113300 3.8312
1.6632 113400 3.8692
1.6647 113500 3.924
1.6662 113600 4.0122
1.6676 113700 4.0432
1.6691 113800 3.8391
1.6706 113900 4.4089
1.6720 114000 3.7079
1.6735 114100 3.4194
1.6750 114200 4.2441
1.6764 114300 3.7279
1.6779 114400 3.8588
1.6794 114500 3.8865
1.6808 114600 3.6613
1.6823 114700 3.8352
1.6838 114800 4.0586
1.6852 114900 3.7488
1.6867 115000 3.7452
1.6882 115100 3.6076
1.6896 115200 3.968
1.6911 115300 4.2497
1.6926 115400 3.9571
1.6940 115500 3.6752
1.6955 115600 3.642
1.6970 115700 3.9887
1.6984 115800 3.7685
1.6999 115900 3.8536
1.7014 116000 4.081
1.7028 116100 4.192
1.7043 116200 4.081
1.7058 116300 3.8161
1.7072 116400 3.8421
1.7087 116500 3.7503
1.7102 116600 3.7952
1.7116 116700 4.1302
1.7131 116800 3.7091
1.7146 116900 4.0009
1.7160 117000 3.5709
1.7175 117100 3.954
1.7190 117200 4.0199
1.7204 117300 3.5756
1.7219 117400 3.8475
1.7234 117500 3.7051
1.7248 117600 3.5641
1.7263 117700 3.925
1.7278 117800 3.807
1.7292 117900 3.9412
1.7307 118000 3.8442
1.7322 118100 3.6595
1.7336 118200 3.8921
1.7351 118300 3.7817
1.7366 118400 3.9047
1.7380 118500 3.571
1.7395 118600 3.7622
1.7410 118700 3.8685
1.7424 118800 3.9514
1.7439 118900 4.055
1.7454 119000 3.6103
1.7468 119100 4.0892
1.7483 119200 3.7731
1.7498 119300 3.8561
1.7512 119400 4.1297
1.7527 119500 4.1099
1.7542 119600 4.1831
1.7556 119700 3.8201
1.7571 119800 3.9437
1.7586 119900 3.9154
1.7600 120000 3.9049
1.7615 120100 3.4697
1.7630 120200 3.8302
1.7644 120300 3.8078
1.7659 120400 3.7894
1.7674 120500 3.9003
1.7688 120600 3.8005
1.7703 120700 3.6398
1.7718 120800 4.0086
1.7732 120900 3.8627
1.7747 121000 3.5175
1.7762 121100 3.7655
1.7776 121200 3.8143
1.7791 121300 4.1813
1.7806 121400 3.7133
1.7820 121500 3.5701
1.7835 121600 3.3709
1.7850 121700 3.8726
1.7864 121800 3.9624
1.7879 121900 3.8097
1.7894 122000 3.9329
1.7908 122100 3.6713
1.7923 122200 4.1905
1.7938 122300 3.881
1.7952 122400 3.7906
1.7967 122500 3.8061
1.7982 122600 4.0411
1.7996 122700 3.6913
1.8011 122800 4.3033
1.8026 122900 3.84
1.8040 123000 3.8916
1.8055 123100 3.8984
1.8070 123200 3.8142
1.8084 123300 3.5308
1.8099 123400 3.7902
1.8114 123500 3.9144
1.8128 123600 4.1585
1.8143 123700 3.7845
1.8158 123800 4.0398
1.8172 123900 3.7276
1.8187 124000 3.9387
1.8202 124100 3.3395
1.8216 124200 3.8677
1.8231 124300 3.7779
1.8246 124400 3.6872
1.8260 124500 3.8913
1.8275 124600 3.7367
1.8290 124700 4.3299
1.8304 124800 3.8683
1.8319 124900 3.896
1.8334 125000 4.0298
1.8348 125100 3.6089
1.8363 125200 3.5678
1.8378 125300 4.215
1.8392 125400 3.5253
1.8407 125500 3.8163
1.8422 125600 3.8711
1.8436 125700 3.9141
1.8451 125800 4.0036
1.8466 125900 3.4214
1.8480 126000 3.7861
1.8495 126100 3.7758
1.8510 126200 3.9433
1.8524 126300 3.5923
1.8539 126400 3.8646
1.8554 126500 4.4035
1.8568 126600 3.9414
1.8583 126700 3.7132
1.8598 126800 4.3201
1.8612 126900 3.5453
1.8627 127000 3.7816
1.8642 127100 3.6934
1.8656 127200 3.8439
1.8671 127300 3.6114
1.8686 127400 4.1551
1.8700 127500 4.0338
1.8715 127600 3.9158
1.8730 127700 3.7997
1.8744 127800 3.9272
1.8759 127900 3.6009
1.8774 128000 3.8861
1.8789 128100 3.7981
1.8803 128200 3.8183
1.8818 128300 3.975
1.8833 128400 3.4799
1.8847 128500 3.7114
1.8862 128600 3.9392
1.8877 128700 3.7769
1.8891 128800 3.809
1.8906 128900 3.9282
1.8921 129000 4.2751
1.8935 129100 3.8462
1.8950 129200 3.7266
1.8965 129300 3.9677
1.8979 129400 4.0947
1.8994 129500 3.7295
1.9009 129600 3.8264
1.9023 129700 3.8546
1.9038 129800 4.0043
1.9053 129900 3.7995
1.9067 130000 3.7738
1.9082 130100 3.7783
1.9097 130200 3.8013
1.9111 130300 3.8089
1.9126 130400 3.865
1.9141 130500 3.8448
1.9155 130600 3.8157
1.9170 130700 4.0972
1.9185 130800 3.6567
1.9199 130900 3.7441
1.9214 131000 4.0964
1.9229 131100 3.5458
1.9243 131200 4.0343
1.9258 131300 3.681
1.9273 131400 3.8044
1.9287 131500 3.9433
1.9302 131600 3.6754
1.9317 131700 4.3985
1.9331 131800 3.8511
1.9346 131900 4.1095
1.9361 132000 3.2248
1.9375 132100 4.2346
1.9390 132200 3.6429
1.9405 132300 3.9987
1.9419 132400 3.9853
1.9434 132500 3.7949
1.9449 132600 3.6875
1.9463 132700 3.4602
1.9478 132800 3.7481
1.9493 132900 4.1038
1.9507 133000 3.7001
1.9522 133100 3.6621
1.9537 133200 3.5483
1.9551 133300 3.7601
1.9566 133400 3.9289
1.9581 133500 3.8237
1.9595 133600 3.6393
1.9610 133700 3.8376
1.9625 133800 3.7313
1.9639 133900 3.7408
1.9654 134000 3.7284
1.9669 134100 3.7694
1.9683 134200 3.8033
1.9698 134300 3.7479
1.9713 134400 3.6453
1.9727 134500 4.1746
1.9742 134600 3.8442
1.9757 134700 3.8437
1.9771 134800 4.0413
1.9786 134900 3.6456
1.9801 135000 3.9108
1.9815 135100 3.617
1.9830 135200 3.7945
1.9845 135300 3.8036
1.9859 135400 4.0028
1.9874 135500 3.8012
1.9889 135600 3.7975
1.9903 135700 4.0858
1.9918 135800 3.7136
1.9933 135900 3.5602
1.9947 136000 3.6315
1.9962 136100 3.7648
1.9977 136200 3.7992
1.9991 136300 3.7614

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
5
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for youssefkhalil320/all-MiniLM-L6-v11-pair_score

Finetuned
(474)
this model