CrossEncoder based on yoriis/ce-final

This is a Cross Encoder model finetuned from yoriis/ce-final using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: yoriis/ce-final
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("yoriis/ce-task-70")
# Get scores for pairs of texts
pairs = [
    ['ู…ุง ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุชูŠ ุชุณุจุญ ุงู„ู„ู‡ุŸ', 'ูŠุง ุจู†ูŠ ุขุฏู… ุฅู…ุง ูŠุฃุชูŠู†ูƒู… ุฑุณู„ ู…ู†ูƒู… ูŠู‚ุตูˆู† ุนู„ูŠูƒู… ุขูŠุงุชูŠ ูู…ู† ุงุชู‚ู‰ ูˆุฃุตู„ุญ ูู„ุง ุฎูˆู ุนู„ูŠู‡ู… ูˆู„ุง ู‡ู… ูŠุญุฒู†ูˆู†. ูˆุงู„ุฐูŠู† ูƒุฐุจูˆุง ุจุขูŠุงุชู†ุง ูˆุงุณุชูƒุจุฑูˆุง ุนู†ู‡ุง ุฃูˆู„ุฆูƒ ุฃุตุญุงุจ ุงู„ู†ุงุฑ ู‡ู… ููŠู‡ุง ุฎุงู„ุฏูˆู†. ูู…ู† ุฃุธู„ู… ู…ู…ู† ุงูุชุฑู‰ ุนู„ู‰ ุงู„ู„ู‡ ูƒุฐุจุง ุฃูˆ ูƒุฐุจ ุจุขูŠุงุชู‡ ุฃูˆู„ุฆูƒ ูŠู†ุงู„ู‡ู… ู†ุตูŠุจู‡ู… ู…ู† ุงู„ูƒุชุงุจ ุญุชู‰ ุฅุฐุง ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ูŠุชูˆููˆู†ู‡ู… ู‚ุงู„ูˆุง ุฃูŠู† ู…ุง ูƒู†ุชู… ุชุฏุนูˆู† ู…ู† ุฏูˆู† ุงู„ู„ู‡ ู‚ุงู„ูˆุง ุถู„ูˆุง ุนู†ุง ูˆุดู‡ุฏูˆุง ุนู„ู‰ ุฃู†ูุณู‡ู… ุฃู†ู‡ู… ูƒุงู†ูˆุง ูƒุงูุฑูŠู†.'],
    ['ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ  ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ', 'ุฅุฐ ู‚ุงู„ ุงู„ู„ู‡ ูŠุง ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุงุฐูƒุฑ ู†ุนู…ุชูŠ ุนู„ูŠูƒ ูˆุนู„ู‰ ูˆุงู„ุฏุชูƒ ุฅุฐ ุฃูŠุฏุชูƒ ุจุฑูˆุญ ุงู„ู‚ุฏุณ ุชูƒู„ู… ุงู„ู†ุงุณ ููŠ ุงู„ู…ู‡ุฏ ูˆูƒู‡ู„ุง ูˆุฅุฐ ุนู„ู…ุชูƒ ุงู„ูƒุชุงุจ ูˆุงู„ุญูƒู…ุฉ ูˆุงู„ุชูˆุฑุงุฉ ูˆุงู„ุฅู†ุฌูŠู„ ูˆุฅุฐ ุชุฎู„ู‚ ู…ู† ุงู„ุทูŠู† ูƒู‡ูŠุฆุฉ ุงู„ุทูŠุฑ ุจุฅุฐู†ูŠ ูุชู†ูุฎ ููŠู‡ุง ูุชูƒูˆู† ุทูŠุฑุง ุจุฅุฐู†ูŠ ูˆุชุจุฑุฆ ุงู„ุฃูƒู…ู‡ ูˆุงู„ุฃุจุฑุต ุจุฅุฐู†ูŠ ูˆุฅุฐ ุชุฎุฑุฌ ุงู„ู…ูˆุชู‰ ุจุฅุฐู†ูŠ ูˆุฅุฐ ูƒููุช ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุนู†ูƒ ุฅุฐ ุฌุฆุชู‡ู… ุจุงู„ุจูŠู†ุงุช ูู‚ุงู„ ุงู„ุฐูŠู† ูƒูุฑูˆุง ู…ู†ู‡ู… ุฅู† ู‡ุฐุง ุฅู„ุง ุณุญุฑ ู…ุจูŠู†. ูˆุฅุฐ ุฃูˆุญูŠุช ุฅู„ู‰ ุงู„ุญูˆุงุฑูŠูŠู† ุฃู† ุขู…ู†ูˆุง ุจูŠ ูˆุจุฑุณูˆู„ูŠ ู‚ุงู„ูˆุง ุขู…ู†ุง ูˆุงุดู‡ุฏ ุจุฃู†ู†ุง ู…ุณู„ู…ูˆู†.'],
    ['ู…ุง ู‡ูˆ ุงู„ุฌู‡ุงุฏุŸ', '[PASSAGE_NOT_FOUND]'],
    ['ู‡ู„ ูƒุงู† ุณูŠุฏู†ุง ูŠูˆุณู ุนู„ูŠู‡ ุงู„ุณู„ุงู… ุฑุณูˆู„ุง ุฃู… ู†ุจูŠุงุŸ', 'ุงู„ุฑุฌุงู„ ู‚ูˆุงู…ูˆู† ุนู„ู‰ ุงู„ู†ุณุงุก ุจู…ุง ูุถู„ ุงู„ู„ู‡ ุจุนุถู‡ู… ุนู„ู‰ ุจุนุถ ูˆุจู…ุง ุฃู†ูู‚ูˆุง ู…ู† ุฃู…ูˆุงู„ู‡ู… ูุงู„ุตุงู„ุญุงุช ู‚ุงู†ุชุงุช ุญุงูุธุงุช ู„ู„ุบูŠุจ ุจู…ุง ุญูุธ ุงู„ู„ู‡ ูˆุงู„ู„ุงุชูŠ ุชุฎุงููˆู† ู†ุดูˆุฒู‡ู† ูุนุธูˆู‡ู† ูˆุงู‡ุฌุฑูˆู‡ู† ููŠ ุงู„ู…ุถุงุฌุน ูˆุงุถุฑุจูˆู‡ู† ูุฅู† ุฃุทุนู†ูƒู… ูู„ุง ุชุจุบูˆุง ุนู„ูŠู‡ู† ุณุจูŠู„ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠุง ูƒุจูŠุฑุง. ูˆุฅู† ุฎูุชู… ุดู‚ุงู‚ ุจูŠู†ู‡ู…ุง ูุงุจุนุซูˆุง ุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ ูˆุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ุง ุฅู† ูŠุฑูŠุฏุง ุฅุตู„ุงุญุง ูŠูˆูู‚ ุงู„ู„ู‡ ุจูŠู†ู‡ู…ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠู…ุง ุฎุจูŠุฑุง.'],
    ['ู…ุง ู‡ูŠ ุงู„ู…ู†ุงูุน ุงู„ุตุญูŠุฉ ู„ุตู„ุงุฉ ุงู„ูุฌุฑุŸ', 'ูˆู‚ุงู„ ุงู„ู„ู‡ ู„ุง ุชุชุฎุฐูˆุง ุฅู„ู‡ูŠู† ุงุซู†ูŠู† ุฅู†ู…ุง ู‡ูˆ ุฅู„ู‡ ูˆุงุญุฏ ูุฅูŠุงูŠ ูุงุฑู‡ุจูˆู†. ูˆู„ู‡ ู…ุง ููŠ ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃุฑุถ ูˆู„ู‡ ุงู„ุฏูŠู† ูˆุงุตุจุง ุฃูุบูŠุฑ ุงู„ู„ู‡ ุชุชู‚ูˆู†. ูˆู…ุง ุจูƒู… ู…ู† ู†ุนู…ุฉ ูู…ู† ุงู„ู„ู‡ ุซู… ุฅุฐุง ู…ุณูƒู… ุงู„ุถุฑ ูุฅู„ูŠู‡ ุชุฌุฃุฑูˆู†. ุซู… ุฅุฐุง ูƒุดู ุงู„ุถุฑ ุนู†ูƒู… ุฅุฐุง ูุฑูŠู‚ ู…ู†ูƒู… ุจุฑุจู‡ู… ูŠุดุฑูƒูˆู†. ู„ูŠูƒูุฑูˆุง ุจู…ุง ุขุชูŠู†ุงู‡ู… ูุชู…ุชุนูˆุง ูุณูˆู ุชุนู„ู…ูˆู†.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'ู…ุง ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุชูŠ ุชุณุจุญ ุงู„ู„ู‡ุŸ',
    [
        'ูŠุง ุจู†ูŠ ุขุฏู… ุฅู…ุง ูŠุฃุชูŠู†ูƒู… ุฑุณู„ ู…ู†ูƒู… ูŠู‚ุตูˆู† ุนู„ูŠูƒู… ุขูŠุงุชูŠ ูู…ู† ุงุชู‚ู‰ ูˆุฃุตู„ุญ ูู„ุง ุฎูˆู ุนู„ูŠู‡ู… ูˆู„ุง ู‡ู… ูŠุญุฒู†ูˆู†. ูˆุงู„ุฐูŠู† ูƒุฐุจูˆุง ุจุขูŠุงุชู†ุง ูˆุงุณุชูƒุจุฑูˆุง ุนู†ู‡ุง ุฃูˆู„ุฆูƒ ุฃุตุญุงุจ ุงู„ู†ุงุฑ ู‡ู… ููŠู‡ุง ุฎุงู„ุฏูˆู†. ูู…ู† ุฃุธู„ู… ู…ู…ู† ุงูุชุฑู‰ ุนู„ู‰ ุงู„ู„ู‡ ูƒุฐุจุง ุฃูˆ ูƒุฐุจ ุจุขูŠุงุชู‡ ุฃูˆู„ุฆูƒ ูŠู†ุงู„ู‡ู… ู†ุตูŠุจู‡ู… ู…ู† ุงู„ูƒุชุงุจ ุญุชู‰ ุฅุฐุง ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ูŠุชูˆููˆู†ู‡ู… ู‚ุงู„ูˆุง ุฃูŠู† ู…ุง ูƒู†ุชู… ุชุฏุนูˆู† ู…ู† ุฏูˆู† ุงู„ู„ู‡ ู‚ุงู„ูˆุง ุถู„ูˆุง ุนู†ุง ูˆุดู‡ุฏูˆุง ุนู„ู‰ ุฃู†ูุณู‡ู… ุฃู†ู‡ู… ูƒุงู†ูˆุง ูƒุงูุฑูŠู†.',
        'ุฅุฐ ู‚ุงู„ ุงู„ู„ู‡ ูŠุง ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุงุฐูƒุฑ ู†ุนู…ุชูŠ ุนู„ูŠูƒ ูˆุนู„ู‰ ูˆุงู„ุฏุชูƒ ุฅุฐ ุฃูŠุฏุชูƒ ุจุฑูˆุญ ุงู„ู‚ุฏุณ ุชูƒู„ู… ุงู„ู†ุงุณ ููŠ ุงู„ู…ู‡ุฏ ูˆูƒู‡ู„ุง ูˆุฅุฐ ุนู„ู…ุชูƒ ุงู„ูƒุชุงุจ ูˆุงู„ุญูƒู…ุฉ ูˆุงู„ุชูˆุฑุงุฉ ูˆุงู„ุฅู†ุฌูŠู„ ูˆุฅุฐ ุชุฎู„ู‚ ู…ู† ุงู„ุทูŠู† ูƒู‡ูŠุฆุฉ ุงู„ุทูŠุฑ ุจุฅุฐู†ูŠ ูุชู†ูุฎ ููŠู‡ุง ูุชูƒูˆู† ุทูŠุฑุง ุจุฅุฐู†ูŠ ูˆุชุจุฑุฆ ุงู„ุฃูƒู…ู‡ ูˆุงู„ุฃุจุฑุต ุจุฅุฐู†ูŠ ูˆุฅุฐ ุชุฎุฑุฌ ุงู„ู…ูˆุชู‰ ุจุฅุฐู†ูŠ ูˆุฅุฐ ูƒููุช ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุนู†ูƒ ุฅุฐ ุฌุฆุชู‡ู… ุจุงู„ุจูŠู†ุงุช ูู‚ุงู„ ุงู„ุฐูŠู† ูƒูุฑูˆุง ู…ู†ู‡ู… ุฅู† ู‡ุฐุง ุฅู„ุง ุณุญุฑ ู…ุจูŠู†. ูˆุฅุฐ ุฃูˆุญูŠุช ุฅู„ู‰ ุงู„ุญูˆุงุฑูŠูŠู† ุฃู† ุขู…ู†ูˆุง ุจูŠ ูˆุจุฑุณูˆู„ูŠ ู‚ุงู„ูˆุง ุขู…ู†ุง ูˆุงุดู‡ุฏ ุจุฃู†ู†ุง ู…ุณู„ู…ูˆู†.',
        '[PASSAGE_NOT_FOUND]',
        'ุงู„ุฑุฌุงู„ ู‚ูˆุงู…ูˆู† ุนู„ู‰ ุงู„ู†ุณุงุก ุจู…ุง ูุถู„ ุงู„ู„ู‡ ุจุนุถู‡ู… ุนู„ู‰ ุจุนุถ ูˆุจู…ุง ุฃู†ูู‚ูˆุง ู…ู† ุฃู…ูˆุงู„ู‡ู… ูุงู„ุตุงู„ุญุงุช ู‚ุงู†ุชุงุช ุญุงูุธุงุช ู„ู„ุบูŠุจ ุจู…ุง ุญูุธ ุงู„ู„ู‡ ูˆุงู„ู„ุงุชูŠ ุชุฎุงููˆู† ู†ุดูˆุฒู‡ู† ูุนุธูˆู‡ู† ูˆุงู‡ุฌุฑูˆู‡ู† ููŠ ุงู„ู…ุถุงุฌุน ูˆุงุถุฑุจูˆู‡ู† ูุฅู† ุฃุทุนู†ูƒู… ูู„ุง ุชุจุบูˆุง ุนู„ูŠู‡ู† ุณุจูŠู„ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠุง ูƒุจูŠุฑุง. ูˆุฅู† ุฎูุชู… ุดู‚ุงู‚ ุจูŠู†ู‡ู…ุง ูุงุจุนุซูˆุง ุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ ูˆุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ุง ุฅู† ูŠุฑูŠุฏุง ุฅุตู„ุงุญุง ูŠูˆูู‚ ุงู„ู„ู‡ ุจูŠู†ู‡ู…ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠู…ุง ุฎุจูŠุฑุง.',
        'ูˆู‚ุงู„ ุงู„ู„ู‡ ู„ุง ุชุชุฎุฐูˆุง ุฅู„ู‡ูŠู† ุงุซู†ูŠู† ุฅู†ู…ุง ู‡ูˆ ุฅู„ู‡ ูˆุงุญุฏ ูุฅูŠุงูŠ ูุงุฑู‡ุจูˆู†. ูˆู„ู‡ ู…ุง ููŠ ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃุฑุถ ูˆู„ู‡ ุงู„ุฏูŠู† ูˆุงุตุจุง ุฃูุบูŠุฑ ุงู„ู„ู‡ ุชุชู‚ูˆู†. ูˆู…ุง ุจูƒู… ู…ู† ู†ุนู…ุฉ ูู…ู† ุงู„ู„ู‡ ุซู… ุฅุฐุง ู…ุณูƒู… ุงู„ุถุฑ ูุฅู„ูŠู‡ ุชุฌุฃุฑูˆู†. ุซู… ุฅุฐุง ูƒุดู ุงู„ุถุฑ ุนู†ูƒู… ุฅุฐุง ูุฑูŠู‚ ู…ู†ูƒู… ุจุฑุจู‡ู… ูŠุดุฑูƒูˆู†. ู„ูŠูƒูุฑูˆุง ุจู…ุง ุขุชูŠู†ุงู‡ู… ูุชู…ุชุนูˆุง ูุณูˆู ุชุนู„ู…ูˆู†.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Classification

Metric Value
accuracy 0.9767
accuracy_threshold 0.6094
f1 0.8514
f1_threshold 0.0804
precision 0.8413
recall 0.8618
average_precision 0.8905

Training Details

Training Dataset

Unnamed Dataset

  • Size: 14,287 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 11 characters
    • mean: 41.23 characters
    • max: 201 characters
    • min: 19 characters
    • mean: 213.75 characters
    • max: 1086 characters
    • min: 0.0
    • mean: 0.08
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    ู…ุง ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุชูŠ ุชุณุจุญ ุงู„ู„ู‡ุŸ ูŠุง ุจู†ูŠ ุขุฏู… ุฅู…ุง ูŠุฃุชูŠู†ูƒู… ุฑุณู„ ู…ู†ูƒู… ูŠู‚ุตูˆู† ุนู„ูŠูƒู… ุขูŠุงุชูŠ ูู…ู† ุงุชู‚ู‰ ูˆุฃุตู„ุญ ูู„ุง ุฎูˆู ุนู„ูŠู‡ู… ูˆู„ุง ู‡ู… ูŠุญุฒู†ูˆู†. ูˆุงู„ุฐูŠู† ูƒุฐุจูˆุง ุจุขูŠุงุชู†ุง ูˆุงุณุชูƒุจุฑูˆุง ุนู†ู‡ุง ุฃูˆู„ุฆูƒ ุฃุตุญุงุจ ุงู„ู†ุงุฑ ู‡ู… ููŠู‡ุง ุฎุงู„ุฏูˆู†. ูู…ู† ุฃุธู„ู… ู…ู…ู† ุงูุชุฑู‰ ุนู„ู‰ ุงู„ู„ู‡ ูƒุฐุจุง ุฃูˆ ูƒุฐุจ ุจุขูŠุงุชู‡ ุฃูˆู„ุฆูƒ ูŠู†ุงู„ู‡ู… ู†ุตูŠุจู‡ู… ู…ู† ุงู„ูƒุชุงุจ ุญุชู‰ ุฅุฐุง ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ูŠุชูˆููˆู†ู‡ู… ู‚ุงู„ูˆุง ุฃูŠู† ู…ุง ูƒู†ุชู… ุชุฏุนูˆู† ู…ู† ุฏูˆู† ุงู„ู„ู‡ ู‚ุงู„ูˆุง ุถู„ูˆุง ุนู†ุง ูˆุดู‡ุฏูˆุง ุนู„ู‰ ุฃู†ูุณู‡ู… ุฃู†ู‡ู… ูƒุงู†ูˆุง ูƒุงูุฑูŠู†. 0.0
    ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ ุฅุฐ ู‚ุงู„ ุงู„ู„ู‡ ูŠุง ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุงุฐูƒุฑ ู†ุนู…ุชูŠ ุนู„ูŠูƒ ูˆุนู„ู‰ ูˆุงู„ุฏุชูƒ ุฅุฐ ุฃูŠุฏุชูƒ ุจุฑูˆุญ ุงู„ู‚ุฏุณ ุชูƒู„ู… ุงู„ู†ุงุณ ููŠ ุงู„ู…ู‡ุฏ ูˆูƒู‡ู„ุง ูˆุฅุฐ ุนู„ู…ุชูƒ ุงู„ูƒุชุงุจ ูˆุงู„ุญูƒู…ุฉ ูˆุงู„ุชูˆุฑุงุฉ ูˆุงู„ุฅู†ุฌูŠู„ ูˆุฅุฐ ุชุฎู„ู‚ ู…ู† ุงู„ุทูŠู† ูƒู‡ูŠุฆุฉ ุงู„ุทูŠุฑ ุจุฅุฐู†ูŠ ูุชู†ูุฎ ููŠู‡ุง ูุชูƒูˆู† ุทูŠุฑุง ุจุฅุฐู†ูŠ ูˆุชุจุฑุฆ ุงู„ุฃูƒู…ู‡ ูˆุงู„ุฃุจุฑุต ุจุฅุฐู†ูŠ ูˆุฅุฐ ุชุฎุฑุฌ ุงู„ู…ูˆุชู‰ ุจุฅุฐู†ูŠ ูˆุฅุฐ ูƒููุช ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุนู†ูƒ ุฅุฐ ุฌุฆุชู‡ู… ุจุงู„ุจูŠู†ุงุช ูู‚ุงู„ ุงู„ุฐูŠู† ูƒูุฑูˆุง ู…ู†ู‡ู… ุฅู† ู‡ุฐุง ุฅู„ุง ุณุญุฑ ู…ุจูŠู†. ูˆุฅุฐ ุฃูˆุญูŠุช ุฅู„ู‰ ุงู„ุญูˆุงุฑูŠูŠู† ุฃู† ุขู…ู†ูˆุง ุจูŠ ูˆุจุฑุณูˆู„ูŠ ู‚ุงู„ูˆุง ุขู…ู†ุง ูˆุงุดู‡ุฏ ุจุฃู†ู†ุง ู…ุณู„ู…ูˆู†. 0.0
    ู…ุง ู‡ูˆ ุงู„ุฌู‡ุงุฏุŸ [PASSAGE_NOT_FOUND] 0.0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 4
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss eval_average_precision
0.2800 500 0.181 0.8232
0.5599 1000 0.1431 0.8457
0.8399 1500 0.116 0.8569
1.0 1786 - 0.8621
1.1198 2000 0.1187 0.8696
1.3998 2500 0.1166 0.8764
1.6797 3000 0.1126 0.8871
1.9597 3500 0.1155 0.8902
2.0 3572 - 0.8852
2.2396 4000 0.0905 0.8877
2.5196 4500 0.1201 0.8886
2.7996 5000 0.0995 0.8901
3.0 5358 - 0.8898
3.0795 5500 0.0836 0.8882
3.3595 6000 0.0726 0.8867
3.6394 6500 0.1126 0.8919
3.9194 7000 0.0827 0.8903
4.0 7144 - 0.8905

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.0.0
  • Transformers: 4.55.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
12
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yoriis/ce-task-70

Base model

yoriis/ce-final
Finetuned
(2)
this model

Evaluation results