SentenceTransformer based on yoriis/NAMAA-retriever-contrastive-1
This is a sentence-transformers model finetuned from yoriis/NAMAA-retriever-contrastive-1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: yoriis/NAMAA-retriever-contrastive-1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yoriis/NAMAA-retriever-notfs-final-contrastive")
# Run inference
sentences = [
'ما موقف الآلهة التي كان يشركها الكافرون في عبادتهم لله تعالى يوم القيامة ؟',
'قل لا يعلم من في السماوات والأرض الغيب إلا الله وما يشعرون أيان يبعثون{65} النمل',
'خذوه فغلوه{30} ثم الجحيم صلوه{31} ثم في سلسلة ذرعها سبعون ذراعا فاسلكوه{32} إنه كان لا يؤمن بالله العظيم{33} ولا يحض على طعام المسكين{34} فليس له اليوم هاهنا حميم{35} ولا طعام إلا من غسلين{36} لا يأكله إلا الخاطؤون{37}الحاقة.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,582 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 11.05 tokens
- max: 103 tokens
- min: 13 tokens
- mean: 159.55 tokens
- max: 512 tokens
- min: 0.0
- mean: 0.16
- max: 1.0
- Samples:
sentence_0 sentence_1 label إلى أين يكون إزار المسلم، وثوبه ؟
عن أبي ذر رضي الله عنه قال: تذاكرنا ونحن عند رسول الله ﷺ، أيهما أفضل: مسجد رسول الله ﷺ أو مسجد بيت المقدس؟ فقال: رسول الله ﷺ: «صلاة في مسجدي هذا أفضل من أربع صلوات فيه، ولنِعم المصلّى، وليوشكن أن يكون للرجل مثل شطن (أي: الحبل) فرسه من الأرض حيث يرى منه بيت المقدس خيرٌ له من الدنيا جميعا. أو قال: خير من الدنيا وما فيها». أخرجه الحاكم
0.0
ما حكم الذي يُسرع في أداء صلاته؟
عن ابن عمرو بن العاص رضي الله عنه قال: قال رسول اللَّه ﷺ: (من قام بِعشر آيات لم يُكتبْ من الغافلين، ومن قام بمائة آية كُتِبَ من القانتين، ومن قام بألف آية كُتِبَ من المُقنطرين). أخرجه أبو داود
0.0
هل المشي للمسجد له آداب؟
ما قاله ﷺ: «إذا توضأ أحدكم فأحسن وضوءه، ثم خرج عامداً إلى المسجد فلا يشبكن يديه فإنه في صلاة». أخرجه أبو داود
1.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.5931 | 500 | 0.0132 |
1.1862 | 1000 | 0.0093 |
1.7794 | 1500 | 0.0062 |
2.3725 | 2000 | 0.0044 |
2.9656 | 2500 | 0.0034 |
3.5587 | 3000 | 0.002 |
0.8347 | 500 | 0.0085 |
1.6694 | 1000 | 0.0042 |
2.5042 | 1500 | 0.0024 |
3.3389 | 2000 | 0.0013 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.54.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 2
Model tree for yoriis/NAMAA-retriever-notfs-final-contrastive
Base model
NAMAA-Space/AraModernBert-Base-V1.0
Finetuned
NAMAA-Space/AraModernBert-Base-STS
Finetuned
yoriis/NAMAA-retriever-contrastive-1