CrossEncoder based on yoriis/GTE-tydi
This is a Cross Encoder model finetuned from yoriis/GTE-tydi using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: yoriis/GTE-tydi
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("yoriis/GTE-tydi-tafseer-quqa")
# Get scores for pairs of texts
pairs = [
['ู
ู ูู ุงูุฑุณูู ุงูุฐู ุฃุฑุณูู ุงููู ุฅูู ููู
ุนุงุฏ ุ', 'ูุฐุจุช ุซู
ูุฏ ุจุทุบูุงูุง{11} ุฅุฐ ุงูุจุนุซ ุฃุดูุงูุง{12} ููุงู ููู
ุฑุณูู ุงููู ูุงูุฉ ุงููู ูุณููุงูุง{13} ููุฐุจูู ูุนูุฑููุง ูุฏู
ุฏู
ุนูููู
ุฑุจูู
ุจุฐูุจูู
ูุณูุงูุง{14} ููุง ูุฎุงู ุนูุจุงูุง{15}ุงูุดู
ุณ.'],
['ู
ุง ูู ุดุฑูุท ุงูุตูุงุฉ ุ', 'ูู
ุง ู
ูุนูู
ุฃู ุชูุจู ู
ููู
ูููุงุชูู
ุฅูุง ุฃููู
ููุฑูุง ุจุงููู ูุจุฑุณููู ููุง ูุฃุชูู ุงูุตูุงุฉ ุฅูุง ููู
ูุณุงูู ููุง ูููููู ุฅูุง ููู
ูุงุฑููู{54} ุงูุชูุจุฉ'],
['ู
ู ุงูุฐู ุตูุน ุนุฌูุง ู
ู ุงูุญูู ูุจูู ุฅุณุฑุงุฆููุ', 'ูุงู ูู
ุง ุฎุทุจู ูุง ุณุงู
ุฑู {95} ูุงู ุจุตุฑุช ุจู
ุง ูู
ูุจุตุฑูุง ุจู ููุจุถุช ูุจุถุฉ ู
ู ุฃุซุฑ ุงูุฑุณูู ููุจุฐุชูุง ููุฐูู ุณููุช ูู ููุณู {96} ูุงู ูุงุฐูุจ ูุฅู ูู ูู ุงูุญูุงุฉ ุฃู ุชููู ูุง ู
ุณุงุณ ูุฅู ูู ู
ูุนุฏุง ูู ุชุฎููู ูุงูุธุฑ ุฅูู ุฅููู ุงูุฐู ุธูุช ุนููู ุนุงููุง ููุญุฑููู ุซู
ูููุณููู ูู ุงููู
ูุณูุง {97}ุทู'],
['ุงูุฅูู
ุงู ุฃุณุงุณ ุงูุชูููุ ูุฃู ุงูุฅูู
ุงู ุจุงููู ูุชููุงู ูุคููุงู ูููุถ ู
ู ุจุฑูุงุช ุงูุณู
ุงุก ูุงูุฃุฑุถุ ุฃุฐูุฑ ุงูุขูุฉ ุงูุชู ุฏูุช ุนูู ูุฐุง ุงูู
ุนููุ.', 'ูู
ุง ูุงู ูุจุดุฑ ุฃู ูููู
ู ุงููู ุฅูุง ูุญูุง ุฃู ู
ู ูุฑุงุก ุญุฌุงุจ ุฃู ูุฑุณู ุฑุณููุง ูููุญู ุจุฅุฐูู ู
ุง ูุดุงุก ุฅูู ุนูู ุญููู
{51}ุงูุดูุฑู.'],
['ูู ุณูุฑุฉ ุงููุงุชุญุฉ ุฐูุฑ ุงูู
ุบุถูุจ ุนูููู
ูู
ู ูู
ุ', 'ุจุฆุณู
ุง ุงุดุชุฑูุง ุจู ุฃููุณูู
ุฃู ูููุฑูุง ุจู
ุง ุฃูุฒู ุงููู ุจุบูุง ุฃู ููุฒู ุงููู ู
ู ูุถูู ุนูู ู
ู ูุดุงุก ู
ู ุนุจุงุฏู ูุจุงุกูุง ุจุบุถุจ ุนูู ุบุถุจ ููููุงูุฑูู ุนุฐุงุจ ู
ููู{90} ุงูุจูุฑุฉ'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'ู
ู ูู ุงูุฑุณูู ุงูุฐู ุฃุฑุณูู ุงููู ุฅูู ููู
ุนุงุฏ ุ',
[
'ูุฐุจุช ุซู
ูุฏ ุจุทุบูุงูุง{11} ุฅุฐ ุงูุจุนุซ ุฃุดูุงูุง{12} ููุงู ููู
ุฑุณูู ุงููู ูุงูุฉ ุงููู ูุณููุงูุง{13} ููุฐุจูู ูุนูุฑููุง ูุฏู
ุฏู
ุนูููู
ุฑุจูู
ุจุฐูุจูู
ูุณูุงูุง{14} ููุง ูุฎุงู ุนูุจุงูุง{15}ุงูุดู
ุณ.',
'ูู
ุง ู
ูุนูู
ุฃู ุชูุจู ู
ููู
ูููุงุชูู
ุฅูุง ุฃููู
ููุฑูุง ุจุงููู ูุจุฑุณููู ููุง ูุฃุชูู ุงูุตูุงุฉ ุฅูุง ููู
ูุณุงูู ููุง ูููููู ุฅูุง ููู
ูุงุฑููู{54} ุงูุชูุจุฉ',
'ูุงู ูู
ุง ุฎุทุจู ูุง ุณุงู
ุฑู {95} ูุงู ุจุตุฑุช ุจู
ุง ูู
ูุจุตุฑูุง ุจู ููุจุถุช ูุจุถุฉ ู
ู ุฃุซุฑ ุงูุฑุณูู ููุจุฐุชูุง ููุฐูู ุณููุช ูู ููุณู {96} ูุงู ูุงุฐูุจ ูุฅู ูู ูู ุงูุญูุงุฉ ุฃู ุชููู ูุง ู
ุณุงุณ ูุฅู ูู ู
ูุนุฏุง ูู ุชุฎููู ูุงูุธุฑ ุฅูู ุฅููู ุงูุฐู ุธูุช ุนููู ุนุงููุง ููุญุฑููู ุซู
ูููุณููู ูู ุงููู
ูุณูุง {97}ุทู',
'ูู
ุง ูุงู ูุจุดุฑ ุฃู ูููู
ู ุงููู ุฅูุง ูุญูุง ุฃู ู
ู ูุฑุงุก ุญุฌุงุจ ุฃู ูุฑุณู ุฑุณููุง ูููุญู ุจุฅุฐูู ู
ุง ูุดุงุก ุฅูู ุนูู ุญููู
{51}ุงูุดูุฑู.',
'ุจุฆุณู
ุง ุงุดุชุฑูุง ุจู ุฃููุณูู
ุฃู ูููุฑูุง ุจู
ุง ุฃูุฒู ุงููู ุจุบูุง ุฃู ููุฒู ุงููู ู
ู ูุถูู ุนูู ู
ู ูุดุงุก ู
ู ุนุจุงุฏู ูุจุงุกูุง ุจุบุถุจ ุนูู ุบุถุจ ููููุงูุฑูู ุนุฐุงุจ ู
ููู{90} ุงูุจูุฑุฉ',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Classification
- Dataset:
eval
- Evaluated with
CrossEncoderClassificationEvaluator
Metric | Value |
---|---|
accuracy | 1.0 |
accuracy_threshold | 0.8513 |
f1 | 1.0 |
f1_threshold | 0.8513 |
precision | 1.0 |
recall | 1.0 |
average_precision | 1.0 |
Cross Encoder Classification
- Dataset:
eval
- Evaluated with
CrossEncoderClassificationEvaluator
Metric | Value |
---|---|
accuracy | 0.9362 |
accuracy_threshold | 0.401 |
f1 | 0.8677 |
f1_threshold | 0.2964 |
precision | 0.901 |
recall | 0.8368 |
average_precision | 0.9243 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 12,128 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 9 characters
- mean: 71.49 characters
- max: 504 characters
- min: 18 characters
- mean: 132.95 characters
- max: 968 characters
- min: 0.0
- mean: 0.26
- max: 1.0
- Samples:
sentence_0 sentence_1 label ู ู ูู ุงูุฑุณูู ุงูุฐู ุฃุฑุณูู ุงููู ุฅูู ููู ุนุงุฏ ุ
ูุฐุจุช ุซู ูุฏ ุจุทุบูุงูุง{11} ุฅุฐ ุงูุจุนุซ ุฃุดูุงูุง{12} ููุงู ููู ุฑุณูู ุงููู ูุงูุฉ ุงููู ูุณููุงูุง{13} ููุฐุจูู ูุนูุฑููุง ูุฏู ุฏู ุนูููู ุฑุจูู ุจุฐูุจูู ูุณูุงูุง{14} ููุง ูุฎุงู ุนูุจุงูุง{15}ุงูุดู ุณ.
0.0
ู ุง ูู ุดุฑูุท ุงูุตูุงุฉ ุ
ูู ุง ู ูุนูู ุฃู ุชูุจู ู ููู ูููุงุชูู ุฅูุง ุฃููู ููุฑูุง ุจุงููู ูุจุฑุณููู ููุง ูุฃุชูู ุงูุตูุงุฉ ุฅูุง ููู ูุณุงูู ููุง ูููููู ุฅูุง ููู ูุงุฑููู{54} ุงูุชูุจุฉ
1.0
ู ู ุงูุฐู ุตูุน ุนุฌูุง ู ู ุงูุญูู ูุจูู ุฅุณุฑุงุฆููุ
ูุงู ูู ุง ุฎุทุจู ูุง ุณุงู ุฑู {95} ูุงู ุจุตุฑุช ุจู ุง ูู ูุจุตุฑูุง ุจู ููุจุถุช ูุจุถุฉ ู ู ุฃุซุฑ ุงูุฑุณูู ููุจุฐุชูุง ููุฐูู ุณููุช ูู ููุณู {96} ูุงู ูุงุฐูุจ ูุฅู ูู ูู ุงูุญูุงุฉ ุฃู ุชููู ูุง ู ุณุงุณ ูุฅู ูู ู ูุนุฏุง ูู ุชุฎููู ูุงูุธุฑ ุฅูู ุฅููู ุงูุฐู ุธูุช ุนููู ุนุงููุง ููุญุฑููู ุซู ูููุณููู ูู ุงููู ูุณูุง {97}ุทู
1.0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 4fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | eval_average_precision |
---|---|---|---|
0.4386 | 500 | 0.1057 | 1.0 |
0.8772 | 1000 | 0.001 | 1.0000 |
1.0 | 1140 | - | 1.0 |
1.3158 | 1500 | 0.0008 | 1.0000 |
1.7544 | 2000 | 0.0005 | 1.0000 |
2.0 | 2280 | - | 1.0000 |
2.1930 | 2500 | 0.0005 | 1.0 |
2.6316 | 3000 | 0.0004 | 1.0 |
3.0 | 3420 | - | 1.0000 |
3.0702 | 3500 | 0.0004 | 1.0 |
3.5088 | 4000 | 0.0004 | 1.0000 |
3.9474 | 4500 | 0.0004 | 1.0 |
4.0 | 4560 | - | 1.0 |
0.3298 | 500 | 0.4486 | 0.9037 |
0.6596 | 1000 | 0.3242 | 0.9110 |
0.9894 | 1500 | 0.3305 | 0.9150 |
1.0 | 1516 | - | 0.9149 |
1.3193 | 2000 | 0.2919 | 0.9185 |
1.6491 | 2500 | 0.2892 | 0.9198 |
1.9789 | 3000 | 0.2665 | 0.9209 |
2.0 | 3032 | - | 0.9208 |
2.3087 | 3500 | 0.2782 | 0.9219 |
2.6385 | 4000 | 0.2888 | 0.9229 |
2.9683 | 4500 | 0.2502 | 0.9234 |
3.0 | 4548 | - | 0.9235 |
3.2982 | 5000 | 0.2584 | 0.9237 |
3.6280 | 5500 | 0.2487 | 0.9241 |
3.9578 | 6000 | 0.2701 | 0.9243 |
4.0 | 6064 | - | 0.9243 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.55.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for yoriis/GTE-tydi-tafseer-quqa
Base model
aubmindlab/bert-base-arabertv02
Finetuned
NAMAA-Space/GATE-Reranker-V1
Finetuned
yoriis/GTE-tydi
Evaluation results
- Accuracy on evalself-reported1.000
- Accuracy Threshold on evalself-reported0.851
- F1 on evalself-reported1.000
- F1 Threshold on evalself-reported0.851
- Precision on evalself-reported1.000
- Recall on evalself-reported1.000
- Average Precision on evalself-reported1.000
- Accuracy on evalself-reported0.936
- Accuracy Threshold on evalself-reported0.401
- F1 on evalself-reported0.868