princepride's picture
Update model.py
0fc9e07 verified
raw
history blame
30.1 kB
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os
from abc import ABC, abstractmethod
from typing import List
import re
class FilterPipeline():
def __init__(self, filter_list):
self._filter_list:List[Filter] = filter_list
def append(self, filter):
self._filter_list.append(filter)
def batch_encoder(self, inputs):from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os
from abc import ABC, abstractmethod
from typing import List
import re
class FilterPipeline():
def __init__(self, filter_list):
self._filter_list:List[Filter] = filter_list
def append(self, filter):
self._filter_list.append(filter)
def batch_encoder(self, inputs):
for filter in self._filter_list:
inputs = filter.encoder(inputs)
return inputs
def batch_decoder(self, inputs):
for filter in reversed(self._filter_list):
inputs = filter.decoder(inputs)
return inputs
class Filter(ABC):
def __init__(self):
self.name = 'filter'
self.code = []
@abstractmethod
def encoder(self, inputs):
pass
@abstractmethod
def decoder(self, inputs):
pass
class SpecialTokenFilter(Filter):
def __init__(self):
self.name = 'special token filter'
self.code = []
self.special_tokens = ['!', '!', '-']
def encoder(self, inputs):
filtered_inputs = []
self.code = []
for i, input_str in enumerate(inputs):
if not all(char in self.special_tokens for char in input_str):
filtered_inputs.append(input_str)
else:
self.code.append([i, input_str])
return filtered_inputs
def decoder(self, inputs):
original_inputs = inputs.copy()
for removed_indice in self.code:
original_inputs.insert(removed_indice[0], removed_indice[1])
return original_inputs
class SperSignFilter(Filter):
def __init__(self):
self.name = 's persign filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, input_str in enumerate(inputs):
if 's%' in input_str:
encoded_str = input_str.replace('s%', '*')
self.code.append(i) # 将包含 's%' 的字符串的索引存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i in self.code:
decoded_inputs[i] = decoded_inputs[i].replace('*', 's%') # 使用 self.code 中的索引还原原始字符串
return decoded_inputs
class SimilarFilter(Filter):
def __init__(self):
self.name = 'similar filter'
self.code = []
def is_similar(self, str1, str2):
# 判断两个字符串是否相似(只有数字上有区别)
pattern = re.compile(r'\d+')
return pattern.sub('', str1) == pattern.sub('', str2)
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
i = 0
while i < len(inputs):
encoded_inputs.append(inputs[i])
similar_strs = [inputs[i]]
j = i + 1
while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
similar_strs.append(inputs[j])
j += 1
if len(similar_strs) > 1:
self.code.append((i, similar_strs)) # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
i = j
return encoded_inputs
def decoder(self, inputs:List):
decoded_inputs = inputs
for i, similar_strs in self.code:
pattern = re.compile(r'\d+')
for j in range(len(similar_strs)):
if pattern.search(similar_strs[j]):
number = re.findall(r'\d+', similar_strs[j])[0] # 获取相似字符串的数字部分
new_str = pattern.sub(number, inputs[i]) # 将新字符串的数字部分替换为相似字符串的数字部分
else:
new_str = inputs[i] # 如果相似字符串不含数字,直接使用新字符串
if j > 0:
decoded_inputs.insert(i+j, new_str)
return decoded_inputs
script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
class Model():
def __init__(self, modelname, selected_lora_model, selected_gpu):
def get_gpu_index(gpu_info, target_gpu_name):
"""
从 GPU 信息中获取目标 GPU 的索引
Args:
gpu_info (list): 包含 GPU 名称的列表
target_gpu_name (str): 目标 GPU 的名称
Returns:
int: 目标 GPU 的索引,如果未找到则返回 -1
"""
for i, name in enumerate(gpu_info):
if target_gpu_name.lower() in name.lower():
return i
return -1
if selected_gpu != "cpu":
gpu_count = torch.cuda.device_count()
gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
self.device_name = f"cuda:{selected_gpu_index}"
else:
self.device_name = "cpu"
print("device_name", self.device_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
self.tokenizer = AutoTokenizer.from_pretrained(modelname)
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
def generate(self, inputs, original_language, target_languages, max_batch_size):
filter_list = [SpecialTokenFilter(), SperSignFilter(), SimilarFilter()]
filter_pipeline = FilterPipeline(filter_list)
def language_mapping(original_language):
d = {
"Achinese (Arabic script)": "ace_Arab",
"Achinese (Latin script)": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Standard Arabic": "arb_Arab",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar (Arabic script)": "bjn_Arab",
"Banjar (Latin script)": "bjn_Latn",
"Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Dinka": "dik_Latn",
"Jula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Persian": "pes_Arab",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Iloko": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Kachin": "kac_Latn",
"Arabic": "ar_AR",
"Chinese": "zho_Hans",
"Spanish": "spa_Latn",
"Dutch": "nld_Latn",
"Kazakh": "kaz_Cyrl",
"Korean": "kor_Hang",
"Lithuanian": "lit_Latn",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Nepali": "ne_NP",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Russian": "rus_Cyrl",
"Sinhala": "sin_Sinh",
"Tamil": "tam_Taml",
"Turkish": "tur_Latn",
"Ukrainian": "ukr_Cyrl",
"Urdu": "urd_Arab",
"Vietnamese": "vie_Latn",
"Thai":"tha_Thai"
}
return d[original_language]
def process_gpu_translate_result(temp_outputs):
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
excel_writer = ExcelFileWriter()
excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
self.tokenizer.src_lang = language_mapping(original_language)
if self.device_name == "cpu":
# Tokenize input
input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
output = []
for target_language in target_languages:
# Get language code for the target language
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
# Generate translation
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
max_length=128
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Append result to output
output.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
outputs = []
length = len(output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
else:
# 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
# max_batch_size = 10
# Ensure batch size is within model limits:
print("length of inputs: ",len(inputs))
batch_size = min(len(inputs), int(max_batch_size))
batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
print("length of batches size: ", len(batches))
temp_outputs = []
processed_num = 0
for index, batch in enumerate(batches):
# Tokenize input
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print(len(batch))
print(batch)
batch = filter_pipeline.batch_encoder(batch)
print(batch)
input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
temp = []
for target_language in target_languages:
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(generated_translation)
generated_translation = filter_pipeline.batch_decoder(generated_translation)
print(generated_translation)
print(len(generated_translation))
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
input_ids.to('cpu')
del input_ids
temp_outputs.append(temp)
processed_num += len(batch)
if (index + 1) * max_batch_size // 1000 - index * max_batch_size // 1000 == 1:
print("Already processed number: ", len(temp_outputs))
process_gpu_translate_result(temp_outputs)
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
for filter in self._filter_list:
inputs = filter.encoder(inputs)
return inputs
def batch_decoder(self, inputs):
for filter in reversed(self._filter_list):
inputs = filter.decoder(inputs)
return inputs
class Filter(ABC):
def __init__(self):
self.name = 'filter'
self.code = []
@abstractmethod
def encoder(self, inputs):
pass
@abstractmethod
def decoder(self, inputs):
pass
class SpecialTokenFilter(Filter):
def __init__(self):
self.name = 'special token filter'
self.code = []
self.special_tokens = ['!', '!']
def encoder(self, inputs):
filtered_inputs = []
self.code = []
for i, input_str in enumerate(inputs):
if not all(char in self.special_tokens for char in input_str):
filtered_inputs.append(input_str)
else:
self.code.append([i, input_str])
return filtered_inputs
def decoder(self, inputs):
original_inputs = inputs.copy()
for removed_indice in self.code:
original_inputs.insert(removed_indice[0], removed_indice[1])
return original_inputs
class SperSignFilter(Filter):
def __init__(self):
self.name = 's persign filter'
self.code = []
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
for i, input_str in enumerate(inputs):
if 's%' in input_str:
encoded_str = input_str.replace('s%', '*')
self.code.append(i) # 将包含 's%' 的字符串的索引存储到 self.code 中
else:
encoded_str = input_str
encoded_inputs.append(encoded_str)
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = inputs.copy()
for i in self.code:
decoded_inputs[i] = decoded_inputs[i].replace('*', 's%') # 使用 self.code 中的索引还原原始字符串
return decoded_inputs
class SimilarFilter(Filter):
def __init__(self):
self.name = 'similar filter'
self.code = []
def is_similar(self, str1, str2):
# 判断两个字符串是否相似(只有数字上有区别)
pattern = re.compile(r'\d+')
return pattern.sub('', str1) == pattern.sub('', str2)
def encoder(self, inputs):
encoded_inputs = []
self.code = [] # 清空 self.code
i = 0
while i < len(inputs):
encoded_inputs.append(inputs[i])
similar_strs = [inputs[i]]
j = i + 1
while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
similar_strs.append(inputs[j])
j += 1
if len(similar_strs) > 1:
self.code.append((i, similar_strs)) # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
i = j
return encoded_inputs
def decoder(self, inputs):
decoded_inputs = []
index = 0
for i, similar_strs in self.code:
decoded_inputs.extend(inputs[index:i])
decoded_inputs.extend(similar_strs) # 直接将实际的相似字符串添加到 decoded_inputs 中
index = i + 1
decoded_inputs.extend(inputs[index:])
return decoded_inputs
script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))
class Model():
def __init__(self, modelname, selected_lora_model, selected_gpu):
def get_gpu_index(gpu_info, target_gpu_name):
"""
从 GPU 信息中获取目标 GPU 的索引
Args:
gpu_info (list): 包含 GPU 名称的列表
target_gpu_name (str): 目标 GPU 的名称
Returns:
int: 目标 GPU 的索引,如果未找到则返回 -1
"""
for i, name in enumerate(gpu_info):
if target_gpu_name.lower() in name.lower():
return i
return -1
if selected_gpu != "cpu":
gpu_count = torch.cuda.device_count()
gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
self.device_name = f"cuda:{selected_gpu_index}"
else:
self.device_name = "cpu"
print("device_name", self.device_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
self.tokenizer = AutoTokenizer.from_pretrained(modelname)
# self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
def generate(self, inputs, original_language, target_languages, max_batch_size):
filter_list = [SpecialTokenFilter(), SperSignFilter(), SimilarFilter()]
filter_pipeline = FilterPipeline(filter_list)
def language_mapping(original_language):
d = {
"Achinese (Arabic script)": "ace_Arab",
"Achinese (Latin script)": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Standard Arabic": "arb_Arab",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar (Arabic script)": "bjn_Arab",
"Banjar (Latin script)": "bjn_Latn",
"Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Dinka": "dik_Latn",
"Jula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Persian": "pes_Arab",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Iloko": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Kachin": "kac_Latn",
"Arabic": "ar_AR",
"Chinese": "zho_Hans",
"Spanish": "spa_Latn",
"Dutch": "nld_Latn",
"Kazakh": "kaz_Cyrl",
"Korean": "kor_Hang",
"Lithuanian": "lit_Latn",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Nepali": "ne_NP",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Russian": "rus_Cyrl",
"Sinhala": "sin_Sinh",
"Tamil": "tam_Taml",
"Turkish": "tur_Latn",
"Ukrainian": "ukr_Cyrl",
"Urdu": "urd_Arab",
"Vietnamese": "vie_Latn",
"Thai":"tha_Thai"
}
return d[original_language]
def process_gpu_translate_result(temp_outputs):
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
excel_writer = ExcelFileWriter()
excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
self.tokenizer.src_lang = language_mapping(original_language)
if self.device_name == "cpu":
# Tokenize input
input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
output = []
for target_language in target_languages:
# Get language code for the target language
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
# Generate translation
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
max_length=128
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# Append result to output
output.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
outputs = []
length = len(output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs
else:
# 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
# max_batch_size = 10
# Ensure batch size is within model limits:
print("length of inputs: ",len(inputs))
batch_size = min(len(inputs), int(max_batch_size))
batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
print("length of batches size: ", len(batches))
temp_outputs = []
processed_num = 0
for index, batch in enumerate(batches):
# Tokenize input
batch = filter_pipeline.batch_encoder(batch)
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print(batch)
input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
temp = []
for target_language in target_languages:
target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
generated_tokens = self.model.generate(
**input_ids,
forced_bos_token_id=target_lang_code,
)
generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(generated_translation)
generated_translation = filter_pipeline.batch_decoder(generated_translation)
# Append result to output
temp.append({
"target_language": target_language,
"generated_translation": generated_translation,
})
input_ids.to('cpu')
del input_ids
temp_outputs.append(temp)
processed_num += len(batch)
if (index + 1) * max_batch_size // 1000 - index * max_batch_size // 1000 == 1:
print("Already processed number: ", len(temp_outputs))
process_gpu_translate_result(temp_outputs)
outputs = []
for temp_output in temp_outputs:
length = len(temp_output[0]["generated_translation"])
for i in range(length):
temp = []
for trans in temp_output:
temp.append({
"target_language": trans["target_language"],
"generated_translation": trans['generated_translation'][i],
})
outputs.append(temp)
return outputs