File size: 30,123 Bytes
0fc9e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a89750
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os

from abc import ABC, abstractmethod
from typing import List
import re

class FilterPipeline():
    def __init__(self, filter_list):
        self._filter_list:List[Filter] = filter_list

    def append(self, filter):
        self._filter_list.append(filter)

    def batch_encoder(self, inputs):from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from modules.file import ExcelFileWriter
import os

from abc import ABC, abstractmethod
from typing import List
import re

class FilterPipeline():
    def __init__(self, filter_list):
        self._filter_list:List[Filter] = filter_list

    def append(self, filter):
        self._filter_list.append(filter)

    def batch_encoder(self, inputs):
        for filter in self._filter_list:
            inputs = filter.encoder(inputs)
        return inputs
    
    def batch_decoder(self, inputs):
        for filter in reversed(self._filter_list):
            inputs = filter.decoder(inputs)
        return inputs

class Filter(ABC):
    def __init__(self):
        self.name = 'filter'
        self.code = []
    @abstractmethod
    def encoder(self, inputs):
        pass

    @abstractmethod
    def decoder(self, inputs):
        pass

class SpecialTokenFilter(Filter):
    def __init__(self):
        self.name = 'special token filter'
        self.code = []
        self.special_tokens = ['!', '!', '-']
    
    def encoder(self, inputs):
        filtered_inputs = []
        self.code = []
        for i, input_str in enumerate(inputs):
            if not all(char in self.special_tokens for char in input_str):
                filtered_inputs.append(input_str)
            else:
                self.code.append([i, input_str])
        return filtered_inputs
    
    def decoder(self, inputs):
        original_inputs = inputs.copy()
        for removed_indice in self.code:
            original_inputs.insert(removed_indice[0], removed_indice[1])
        return original_inputs

class SperSignFilter(Filter):
    def __init__(self):
        self.name = 's persign filter'
        self.code = []
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        for i, input_str in enumerate(inputs):
            if 's%' in input_str:
                encoded_str = input_str.replace('s%', '*')
                self.code.append(i)  # 将包含 's%' 的字符串的索引存储到 self.code 中
            else:
                encoded_str = input_str
            encoded_inputs.append(encoded_str)
        return encoded_inputs
    
    def decoder(self, inputs):
        decoded_inputs = inputs.copy()
        for i in self.code:
            decoded_inputs[i] = decoded_inputs[i].replace('*', 's%')  # 使用 self.code 中的索引还原原始字符串
        return decoded_inputs
    
class SimilarFilter(Filter):
    def __init__(self):
        self.name = 'similar filter'
        self.code = []
    
    def is_similar(self, str1, str2):
        # 判断两个字符串是否相似(只有数字上有区别)
        pattern = re.compile(r'\d+')
        return pattern.sub('', str1) == pattern.sub('', str2)
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        i = 0
        while i < len(inputs):
            encoded_inputs.append(inputs[i])
            similar_strs = [inputs[i]]
            j = i + 1
            while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
                similar_strs.append(inputs[j])
                j += 1
            if len(similar_strs) > 1:
                self.code.append((i, similar_strs))  # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
            i = j
        return encoded_inputs
    
    def decoder(self, inputs:List):
        decoded_inputs = inputs
        for i, similar_strs in self.code:
            pattern = re.compile(r'\d+')
            for j in range(len(similar_strs)):
                if pattern.search(similar_strs[j]):
                    number = re.findall(r'\d+', similar_strs[j])[0]  # 获取相似字符串的数字部分
                    new_str = pattern.sub(number, inputs[i])  # 将新字符串的数字部分替换为相似字符串的数字部分
                else:
                    new_str = inputs[i]  # 如果相似字符串不含数字,直接使用新字符串
                if j > 0:
                    decoded_inputs.insert(i+j, new_str)
        return decoded_inputs

script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))

class Model():
    def __init__(self, modelname, selected_lora_model, selected_gpu):
        def get_gpu_index(gpu_info, target_gpu_name):
            """
            从 GPU 信息中获取目标 GPU 的索引
            Args:
                gpu_info (list): 包含 GPU 名称的列表
                target_gpu_name (str): 目标 GPU 的名称

            Returns:
                int: 目标 GPU 的索引,如果未找到则返回 -1
            """
            for i, name in enumerate(gpu_info):
                if target_gpu_name.lower() in name.lower():
                    return i
            return -1
        if selected_gpu != "cpu":
            gpu_count = torch.cuda.device_count()
            gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
            selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
            self.device_name = f"cuda:{selected_gpu_index}"
        else:
            self.device_name = "cpu"
        print("device_name", self.device_name)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
        self.tokenizer = AutoTokenizer.from_pretrained(modelname)
        # self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
    
    def generate(self, inputs, original_language, target_languages, max_batch_size):
        filter_list = [SpecialTokenFilter(), SperSignFilter(), SimilarFilter()]
        filter_pipeline = FilterPipeline(filter_list)
        def language_mapping(original_language):
            d = {
                "Achinese (Arabic script)": "ace_Arab",
                "Achinese (Latin script)": "ace_Latn",
                "Mesopotamian Arabic": "acm_Arab",
                "Ta'izzi-Adeni Arabic": "acq_Arab",
                "Tunisian Arabic": "aeb_Arab",
                "Afrikaans": "afr_Latn",
                "South Levantine Arabic": "ajp_Arab",
                "Akan": "aka_Latn",
                "Amharic": "amh_Ethi",
                "North Levantine Arabic": "apc_Arab",
                "Standard Arabic": "arb_Arab",
                "Najdi Arabic": "ars_Arab",
                "Moroccan Arabic": "ary_Arab",
                "Egyptian Arabic": "arz_Arab",
                "Assamese": "asm_Beng",
                "Asturian": "ast_Latn",
                "Awadhi": "awa_Deva",
                "Central Aymara": "ayr_Latn",
                "South Azerbaijani": "azb_Arab",
                "North Azerbaijani": "azj_Latn",
                "Bashkir": "bak_Cyrl",
                "Bambara": "bam_Latn",
                "Balinese": "ban_Latn",
                "Belarusian": "bel_Cyrl",
                "Bemba": "bem_Latn",
                "Bengali": "ben_Beng",
                "Bhojpuri": "bho_Deva",
                "Banjar (Arabic script)": "bjn_Arab",
                "Banjar (Latin script)": "bjn_Latn",
                "Tibetan": "bod_Tibt",
                "Bosnian": "bos_Latn",
                "Buginese": "bug_Latn",
                "Bulgarian": "bul_Cyrl",
                "Catalan": "cat_Latn",
                "Cebuano": "ceb_Latn",
                "Czech": "ces_Latn",
                "Chokwe": "cjk_Latn",
                "Central Kurdish": "ckb_Arab",
                "Crimean Tatar": "crh_Latn",
                "Welsh": "cym_Latn",
                "Danish": "dan_Latn",
                "German": "deu_Latn",
                "Dinka": "dik_Latn",
                "Jula": "dyu_Latn",
                "Dzongkha": "dzo_Tibt",
                "Greek": "ell_Grek",
                "English": "eng_Latn",
                "Esperanto": "epo_Latn",
                "Estonian": "est_Latn",
                "Basque": "eus_Latn",
                "Ewe": "ewe_Latn",
                "Faroese": "fao_Latn",
                "Persian": "pes_Arab",
                "Fijian": "fij_Latn",
                "Finnish": "fin_Latn",
                "Fon": "fon_Latn",
                "French": "fra_Latn",
                "Friulian": "fur_Latn",
                "Nigerian Fulfulde": "fuv_Latn",
                "Scottish Gaelic": "gla_Latn",
                "Irish": "gle_Latn",
                "Galician": "glg_Latn",
                "Guarani": "grn_Latn",
                "Gujarati": "guj_Gujr",
                "Haitian Creole": "hat_Latn",
                "Hausa": "hau_Latn",
                "Hebrew": "heb_Hebr",
                "Hindi": "hin_Deva",
                "Chhattisgarhi": "hne_Deva",
                "Croatian": "hrv_Latn",
                "Hungarian": "hun_Latn",
                "Armenian": "hye_Armn",
                "Igbo": "ibo_Latn",
                "Iloko": "ilo_Latn",
                "Indonesian": "ind_Latn",
                "Icelandic": "isl_Latn",
                "Italian": "ita_Latn",
                "Javanese": "jav_Latn",
                "Japanese": "jpn_Jpan",
                "Kabyle": "kab_Latn",
                "Kachin": "kac_Latn",
                "Arabic": "ar_AR",
                "Chinese": "zho_Hans", 
                "Spanish": "spa_Latn",
                "Dutch": "nld_Latn", 
                "Kazakh": "kaz_Cyrl", 
                "Korean": "kor_Hang", 
                "Lithuanian": "lit_Latn",
                "Malayalam": "mal_Mlym", 
                "Marathi": "mar_Deva", 
                "Nepali": "ne_NP", 
                "Polish": "pol_Latn", 
                "Portuguese": "por_Latn", 
                "Russian": "rus_Cyrl", 
                "Sinhala": "sin_Sinh",
                "Tamil": "tam_Taml", 
                "Turkish": "tur_Latn", 
                "Ukrainian": "ukr_Cyrl", 
                "Urdu": "urd_Arab", 
                "Vietnamese": "vie_Latn", 
                "Thai":"tha_Thai"
            }
            return d[original_language]
        def process_gpu_translate_result(temp_outputs):
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            excel_writer = ExcelFileWriter()
            excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
        self.tokenizer.src_lang = language_mapping(original_language)
        if self.device_name == "cpu":
            # Tokenize input
            input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
            output = []
            for target_language in target_languages:
                # Get language code for the target language
                target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                # Generate translation
                generated_tokens = self.model.generate(
                    **input_ids,
                    forced_bos_token_id=target_lang_code,
                    max_length=128
                )
                generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                # Append result to output
                output.append({
                    "target_language": target_language,
                    "generated_translation": generated_translation,
                })
            outputs = []
            length = len(output[0]["generated_translation"])
            for i in range(length):
                temp = []
                for trans in output:
                    temp.append({
                        "target_language": trans["target_language"],
                        "generated_translation": trans['generated_translation'][i],
                    })
                outputs.append(temp)
            return outputs
        else:
            # 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
            # max_batch_size = 10
            # Ensure batch size is within model limits:
            print("length of inputs: ",len(inputs))
            batch_size = min(len(inputs), int(max_batch_size))
            batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
            print("length of batches size: ", len(batches))
            temp_outputs = []
            processed_num = 0
            for index, batch in enumerate(batches):
                # Tokenize input
                print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
                print(len(batch))
                print(batch)
                batch = filter_pipeline.batch_encoder(batch)
                print(batch)
                input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
                temp = []
                for target_language in target_languages:
                    target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                    generated_tokens = self.model.generate(
                        **input_ids,
                        forced_bos_token_id=target_lang_code,
                    )
                    generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                    
                    print(generated_translation)
                    generated_translation = filter_pipeline.batch_decoder(generated_translation)
                    print(generated_translation)
                    print(len(generated_translation))
                    # Append result to output
                    temp.append({
                        "target_language": target_language,
                        "generated_translation": generated_translation,
                    })
                input_ids.to('cpu')
                del input_ids
                temp_outputs.append(temp)
                processed_num += len(batch)
                if (index + 1) * max_batch_size // 1000 - index  * max_batch_size // 1000 == 1:
                    print("Already processed number: ", len(temp_outputs))
                    process_gpu_translate_result(temp_outputs)
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            return outputs
        for filter in self._filter_list:
            inputs = filter.encoder(inputs)
        return inputs
    
    def batch_decoder(self, inputs):
        for filter in reversed(self._filter_list):
            inputs = filter.decoder(inputs)
        return inputs

class Filter(ABC):
    def __init__(self):
        self.name = 'filter'
        self.code = []
    @abstractmethod
    def encoder(self, inputs):
        pass

    @abstractmethod
    def decoder(self, inputs):
        pass

class SpecialTokenFilter(Filter):
    def __init__(self):
        self.name = 'special token filter'
        self.code = []
        self.special_tokens = ['!', '!']
    
    def encoder(self, inputs):
        filtered_inputs = []
        self.code = []
        for i, input_str in enumerate(inputs):
            if not all(char in self.special_tokens for char in input_str):
                filtered_inputs.append(input_str)
            else:
                self.code.append([i, input_str])
        return filtered_inputs
    
    def decoder(self, inputs):
        original_inputs = inputs.copy()
        for removed_indice in self.code:
            original_inputs.insert(removed_indice[0], removed_indice[1])
        return original_inputs

class SperSignFilter(Filter):
    def __init__(self):
        self.name = 's persign filter'
        self.code = []
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        for i, input_str in enumerate(inputs):
            if 's%' in input_str:
                encoded_str = input_str.replace('s%', '*')
                self.code.append(i)  # 将包含 's%' 的字符串的索引存储到 self.code 中
            else:
                encoded_str = input_str
            encoded_inputs.append(encoded_str)
        return encoded_inputs
    
    def decoder(self, inputs):
        decoded_inputs = inputs.copy()
        for i in self.code:
            decoded_inputs[i] = decoded_inputs[i].replace('*', 's%')  # 使用 self.code 中的索引还原原始字符串
        return decoded_inputs
    
class SimilarFilter(Filter):
    def __init__(self):
        self.name = 'similar filter'
        self.code = []
    
    def is_similar(self, str1, str2):
        # 判断两个字符串是否相似(只有数字上有区别)
        pattern = re.compile(r'\d+')
        return pattern.sub('', str1) == pattern.sub('', str2)
    
    def encoder(self, inputs):
        encoded_inputs = []
        self.code = []  # 清空 self.code
        i = 0
        while i < len(inputs):
            encoded_inputs.append(inputs[i])
            similar_strs = [inputs[i]]
            j = i + 1
            while j < len(inputs) and self.is_similar(inputs[i], inputs[j]):
                similar_strs.append(inputs[j])
                j += 1
            if len(similar_strs) > 1:
                self.code.append((i, similar_strs))  # 将相似字符串的起始索引和实际字符串列表存储到 self.code 中
            i = j
        return encoded_inputs
    
    def decoder(self, inputs):
        decoded_inputs = []
        index = 0
        for i, similar_strs in self.code:
            decoded_inputs.extend(inputs[index:i])
            decoded_inputs.extend(similar_strs)  # 直接将实际的相似字符串添加到 decoded_inputs 中
            index = i + 1
        decoded_inputs.extend(inputs[index:])
        return decoded_inputs

script_dir = os.path.dirname(os.path.abspath(__file__))
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(script_dir)))

class Model():
    def __init__(self, modelname, selected_lora_model, selected_gpu):
        def get_gpu_index(gpu_info, target_gpu_name):
            """
            从 GPU 信息中获取目标 GPU 的索引
            Args:
                gpu_info (list): 包含 GPU 名称的列表
                target_gpu_name (str): 目标 GPU 的名称

            Returns:
                int: 目标 GPU 的索引,如果未找到则返回 -1
            """
            for i, name in enumerate(gpu_info):
                if target_gpu_name.lower() in name.lower():
                    return i
            return -1
        if selected_gpu != "cpu":
            gpu_count = torch.cuda.device_count()
            gpu_info = [torch.cuda.get_device_name(i) for i in range(gpu_count)]
            selected_gpu_index = get_gpu_index(gpu_info, selected_gpu)
            self.device_name = f"cuda:{selected_gpu_index}"
        else:
            self.device_name = "cpu"
        print("device_name", self.device_name)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(modelname).to(self.device_name)
        self.tokenizer = AutoTokenizer.from_pretrained(modelname)
        # self.translator = pipeline('translation', model=self.original_model, tokenizer=self.tokenizer, src_lang=original_language, tgt_lang=target_language, device=device)
    
    def generate(self, inputs, original_language, target_languages, max_batch_size):
        filter_list = [SpecialTokenFilter(), SperSignFilter(), SimilarFilter()]
        filter_pipeline = FilterPipeline(filter_list)
        def language_mapping(original_language):
            d = {
                "Achinese (Arabic script)": "ace_Arab",
                "Achinese (Latin script)": "ace_Latn",
                "Mesopotamian Arabic": "acm_Arab",
                "Ta'izzi-Adeni Arabic": "acq_Arab",
                "Tunisian Arabic": "aeb_Arab",
                "Afrikaans": "afr_Latn",
                "South Levantine Arabic": "ajp_Arab",
                "Akan": "aka_Latn",
                "Amharic": "amh_Ethi",
                "North Levantine Arabic": "apc_Arab",
                "Standard Arabic": "arb_Arab",
                "Najdi Arabic": "ars_Arab",
                "Moroccan Arabic": "ary_Arab",
                "Egyptian Arabic": "arz_Arab",
                "Assamese": "asm_Beng",
                "Asturian": "ast_Latn",
                "Awadhi": "awa_Deva",
                "Central Aymara": "ayr_Latn",
                "South Azerbaijani": "azb_Arab",
                "North Azerbaijani": "azj_Latn",
                "Bashkir": "bak_Cyrl",
                "Bambara": "bam_Latn",
                "Balinese": "ban_Latn",
                "Belarusian": "bel_Cyrl",
                "Bemba": "bem_Latn",
                "Bengali": "ben_Beng",
                "Bhojpuri": "bho_Deva",
                "Banjar (Arabic script)": "bjn_Arab",
                "Banjar (Latin script)": "bjn_Latn",
                "Tibetan": "bod_Tibt",
                "Bosnian": "bos_Latn",
                "Buginese": "bug_Latn",
                "Bulgarian": "bul_Cyrl",
                "Catalan": "cat_Latn",
                "Cebuano": "ceb_Latn",
                "Czech": "ces_Latn",
                "Chokwe": "cjk_Latn",
                "Central Kurdish": "ckb_Arab",
                "Crimean Tatar": "crh_Latn",
                "Welsh": "cym_Latn",
                "Danish": "dan_Latn",
                "German": "deu_Latn",
                "Dinka": "dik_Latn",
                "Jula": "dyu_Latn",
                "Dzongkha": "dzo_Tibt",
                "Greek": "ell_Grek",
                "English": "eng_Latn",
                "Esperanto": "epo_Latn",
                "Estonian": "est_Latn",
                "Basque": "eus_Latn",
                "Ewe": "ewe_Latn",
                "Faroese": "fao_Latn",
                "Persian": "pes_Arab",
                "Fijian": "fij_Latn",
                "Finnish": "fin_Latn",
                "Fon": "fon_Latn",
                "French": "fra_Latn",
                "Friulian": "fur_Latn",
                "Nigerian Fulfulde": "fuv_Latn",
                "Scottish Gaelic": "gla_Latn",
                "Irish": "gle_Latn",
                "Galician": "glg_Latn",
                "Guarani": "grn_Latn",
                "Gujarati": "guj_Gujr",
                "Haitian Creole": "hat_Latn",
                "Hausa": "hau_Latn",
                "Hebrew": "heb_Hebr",
                "Hindi": "hin_Deva",
                "Chhattisgarhi": "hne_Deva",
                "Croatian": "hrv_Latn",
                "Hungarian": "hun_Latn",
                "Armenian": "hye_Armn",
                "Igbo": "ibo_Latn",
                "Iloko": "ilo_Latn",
                "Indonesian": "ind_Latn",
                "Icelandic": "isl_Latn",
                "Italian": "ita_Latn",
                "Javanese": "jav_Latn",
                "Japanese": "jpn_Jpan",
                "Kabyle": "kab_Latn",
                "Kachin": "kac_Latn",
                "Arabic": "ar_AR",
                "Chinese": "zho_Hans", 
                "Spanish": "spa_Latn",
                "Dutch": "nld_Latn", 
                "Kazakh": "kaz_Cyrl", 
                "Korean": "kor_Hang", 
                "Lithuanian": "lit_Latn",
                "Malayalam": "mal_Mlym", 
                "Marathi": "mar_Deva", 
                "Nepali": "ne_NP", 
                "Polish": "pol_Latn", 
                "Portuguese": "por_Latn", 
                "Russian": "rus_Cyrl", 
                "Sinhala": "sin_Sinh",
                "Tamil": "tam_Taml", 
                "Turkish": "tur_Latn", 
                "Ukrainian": "ukr_Cyrl", 
                "Urdu": "urd_Arab", 
                "Vietnamese": "vie_Latn", 
                "Thai":"tha_Thai"
            }
            return d[original_language]
        def process_gpu_translate_result(temp_outputs):
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            excel_writer = ExcelFileWriter()
            excel_writer.write_text(os.path.join(parent_dir,r"temp/empty.xlsx"), outputs, 'A', 1, len(outputs))
        self.tokenizer.src_lang = language_mapping(original_language)
        if self.device_name == "cpu":
            # Tokenize input
            input_ids = self.tokenizer(inputs, return_tensors="pt", padding=True, max_length=128).to(self.device_name)
            output = []
            for target_language in target_languages:
                # Get language code for the target language
                target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                # Generate translation
                generated_tokens = self.model.generate(
                    **input_ids,
                    forced_bos_token_id=target_lang_code,
                    max_length=128
                )
                generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                # Append result to output
                output.append({
                    "target_language": target_language,
                    "generated_translation": generated_translation,
                })
            outputs = []
            length = len(output[0]["generated_translation"])
            for i in range(length):
                temp = []
                for trans in output:
                    temp.append({
                        "target_language": trans["target_language"],
                        "generated_translation": trans['generated_translation'][i],
                    })
                outputs.append(temp)
            return outputs
        else:
            # 最大批量大小 = 可用 GPU 内存字节数 / 4 / (张量大小 + 可训练参数)
            # max_batch_size = 10
            # Ensure batch size is within model limits:
            print("length of inputs: ",len(inputs))
            batch_size = min(len(inputs), int(max_batch_size))
            batches = [inputs[i:i + batch_size] for i in range(0, len(inputs), batch_size)]
            print("length of batches size: ", len(batches))
            temp_outputs = []
            processed_num = 0
            for index, batch in enumerate(batches):
                # Tokenize input
                batch = filter_pipeline.batch_encoder(batch)
                print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
                print(batch)
                input_ids = self.tokenizer(batch, return_tensors="pt", padding=True).to(self.device_name)
                temp = []
                for target_language in target_languages:
                    target_lang_code = self.tokenizer.lang_code_to_id[language_mapping(target_language)]
                    generated_tokens = self.model.generate(
                        **input_ids,
                        forced_bos_token_id=target_lang_code,
                    )
                    generated_translation = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                    print(generated_translation)
                    generated_translation = filter_pipeline.batch_decoder(generated_translation)
                    # Append result to output
                    temp.append({
                        "target_language": target_language,
                        "generated_translation": generated_translation,
                    })
                input_ids.to('cpu')
                del input_ids
                temp_outputs.append(temp)
                processed_num += len(batch)
                if (index + 1) * max_batch_size // 1000 - index  * max_batch_size // 1000 == 1:
                    print("Already processed number: ", len(temp_outputs))
                    process_gpu_translate_result(temp_outputs)
            outputs = []
            for temp_output in temp_outputs:
                length = len(temp_output[0]["generated_translation"])
                for i in range(length):
                    temp = []
                    for trans in temp_output:
                        temp.append({
                            "target_language": trans["target_language"],
                            "generated_translation": trans['generated_translation'][i],
                        })
                    outputs.append(temp)
            return outputs