Phi-4 DeepSeek Distilled v8 GGUF

This repository contains GGUF quantized versions of the Phi-4 DeepSeek R1 Distilled model. These GGUF files are optimized for local inference using frameworks like llama.cpp and Ollama and LM Studio.

Model Information

  • Base Model: Phi-4 DeepSeek R1 Distilled
  • Parameters: 14.7B
  • Architecture: Phi3
  • Context Length: 16384 tokens
  • Training Data: Improved version of Phi-4, distilled with DeepSeek R1 Reasoning
  • License: MIT

Available Quantizations

File Quantization Size Use Case
Q8_0
Q6_K
Q5_K_M
Q4_K_M

Chat Template

This model uses the ChatML format with the following structure:

<|im_start|>system<|im_sep|>System message here<|im_end|>
<|im_start|>user<|im_sep|>User message here<|im_end|>
<|im_start|>assistant<|im_sep|>Assistant response here<|im_end|>

Usage with Ollama

Create a custom Modelfile (paste this into a file named Modelfile):


FROM /replace/with/path/to/your/gguf-file.gguf

PARAMETER temperature 0.15 PARAMETER top_p 0.93 PARAMETER top_k 50 PARAMETER repeat_penalty 1.15

TEMPLATE """{{ if .System }}<|im_start|>system<|im_sep|>{{ .System }}<|im_end|>{{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user<|im_sep|>{{ .Content }}<|im_en>"""

PARAMETER stop "<|im_start|>"

PARAMETER stop "<|im_end|>"


Then create and use your model:

ollama create phi4-deepseek-r1 -f Modelfile

ollama run phi4-deepseek-r1

Usage with LMStudio

  1. Use the model search option to look up the model from huggingface
  2. Download and Load the Model
  3. Set the chat parameters (top_p, top_k, repeat_penalty etc...)
  4. Chat with the model (LMStudio directly detects the chat template so there is no manual configuration here unlike Ollama)

Usage with llama.cpp

# Download the model from Hugging Face
wget https://huggingface.co/ykarout/phi4-deepseek-r1-distilled-v8-GGUF/resolve/main/phi4-deepseek-r1-distilled-v8-q8_0.gguf

# Run the model with llama.cpp
./main -m phi4-deepseek-r1-distilled-v8-q8_0.gguf -n 1024 --color -i -ins --chatml

Benchmarks & Performance Notes

  • Q8_0: Best quality, requires ~16GB VRAM for 4K context
  • Q3_K_M: Good quality with 60% size reduction, suitable for systems with 8GB+ VRAM
Downloads last month
267
GGUF
Model size
14.7B params
Architecture
phi3
Hardware compatibility
Log In to view the estimation

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ykarout/phi-4-deepseek-r1-distilled-latest-gguf

Base model

microsoft/phi-4
Quantized
(135)
this model

Dataset used to train ykarout/phi-4-deepseek-r1-distilled-latest-gguf