File size: 2,234 Bytes
b2428b5
 
 
 
 
 
 
 
 
9e6e3aa
 
 
 
b2428b5
 
9e6e3aa
 
 
 
 
b2428b5
9e6e3aa
 
 
b2428b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e6e3aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: ykarout/RPT-DeepSeek-R1-0528-Qwen3-8B
tags:
- cybersecurity
- fine-tuned
- deepseek
- qwen3
- lora
- cyber
- nist
- csf
- pentest
language:
- en
- ar
- es
- ru
- it
- de
pipeline_tag: text-generation
datasets:
- Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset
library_name: transformers
---

# CyberSec-Qwen3-DeepSeekv1

This is a cybersecurity-specialized fine-tuned model based on DeepSeek-R1-Qwen3-8B.

## Model Details

- **Base Model**: ykarout/RPT-DeepSeek-R1-0528-Qwen3-8B
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Dataset**: Trendyol Cybersecurity Instruction Tuning Dataset
- **Specialization**: Cybersecurity expertise and guidance

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "ykarout/CyberSec-Qwen3-DeepSeekv1"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Example usage
messages = [
    {"role": "system", "content": "You are a cybersecurity expert."},
    {"role": "user", "content": "What is a DDoS attack and how can it be mitigated?"}
]

input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(response)
```

## Training Details

- **Framework**: TRL (Transformers Reinforcement Learning)
- **Training Method**: Supervised Fine-Tuning (SFT) with LoRA
- **Assistant-only Loss**: Custom data collator for training only on assistant responses
- **Hardware**: NVIDIA H100
- **Precision**: bfloat16

## Ethical Use

This model is designed for educational and defensive cybersecurity purposes only. Please use responsibly and in accordance with applicable laws and ethical guidelines.

## License

Apache 2.0