CyberSec-Qwen3-DeepSeekv1
This is a cybersecurity-specialized fine-tuned model based on DeepSeek-R1-Qwen3-8B.
Model Details
- Base Model: ykarout/RPT-DeepSeek-R1-0528-Qwen3-8B
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
- Dataset: Trendyol Cybersecurity Instruction Tuning Dataset
- Specialization: Cybersecurity expertise and guidance
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "ykarout/CyberSec-Qwen3-DeepSeekv1"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# Example usage
messages = [
{"role": "system", "content": "You are a cybersecurity expert."},
{"role": "user", "content": "What is a DDoS attack and how can it be mitigated?"}
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(response)
Training Details
- Framework: TRL (Transformers Reinforcement Learning)
- Training Method: Supervised Fine-Tuning (SFT) with LoRA
- Assistant-only Loss: Custom data collator for training only on assistant responses
- Hardware: NVIDIA H100
- Precision: bfloat16
Ethical Use
This model is designed for educational and defensive cybersecurity purposes only. Please use responsibly and in accordance with applicable laws and ethical guidelines.
License
Apache 2.0
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support