π Pre:Ranker - reranking tools beforehand
News
- 2025.04.09: π€ preranker-v1, MTEB-ToolRetrieval released!
About Pre:Ranker
So many tools and functions to use? Try Pre:Ranker !
Pre:Ranker is designed to optimize the function calling process of modern LLMs by narrowing down the corpus of available tools based on a given query.
Check π±GITHUB for details!
Exapmle Usage
from sentence_transformers.cross_encoder import CrossEncoder
model = CrossEncoder('yjoonjang/preranker-v1')
model.eval()
pairs = [
["Is 'https://www.apple.com' available in the Wayback Machine on September 9, 2015?", "{'name': 'availability', 'description': 'Checks if a given URL is archived and currently accessible in the Wayback Machine.', 'parameters': {'url': {'description': 'The URL to check for availability in the Wayback Machine.', 'type': 'str', 'default': 'http://mashape.com'}, 'timestamp': {'description': \"The timestamp to look up in Wayback. If not specified, the most recent available capture is returned. The format of the timestamp is 1-14 digits (YYYYMMDDhhmmss). Defaults to '20090101'.\", 'type': 'str, optional', 'default': '20090101'}, 'callback': {'description': 'An optional callback to produce a JSONP response. Defaults to None.', 'type': 'str, optional', 'default': ''}}}"],
["Is 'https://www.apple.com' available in the Wayback Machine on September 9, 2015?", "{'name': 'top_grossing_mac_apps', 'description': 'Fetches a list of the top-grossing Mac apps from the App Store.', 'parameters': {'category': {'description': \"The category ID for the apps to be fetched. Defaults to '6016' (general category).\", 'type': 'str', 'default': '6016'}, 'country': {'description': \"The country code for the App Store. Defaults to 'us'.\", 'type': 'str', 'default': 'us'}, 'lang': {'description': \"The language code for the results. Defaults to 'en'.\", 'type': 'str', 'default': 'en'}, 'num': {'description': 'The number of results to return. Defaults to 100. Maximum allowed value is 200.', 'type': 'int', 'default': '100'}}}"],
["Is 'https://www.apple.com' available in the Wayback Machine on September 9, 2015?", "{'name': 'top_paid_mac_apps', 'description': 'Retrieves a list of the top paid Mac apps from the App Store.', 'parameters': {'category': {'description': \"Category of the apps to retrieve. Default is '6016'.\", 'type': 'str', 'default': '6016'}, 'country': {'description': \"Country code to filter the app results. Default is 'us'.\", 'type': 'str', 'default': 'us'}, 'lang': {'description': \"Language code for the results. Default is 'en'.\", 'type': 'str', 'default': 'en'}, 'num': {'description': 'Number of results to return. Default is 100. Maximum is 200.', 'type': 'int', 'default': '100'}}}",]
]
scores = model.predict(pairs)
print(scores) # [0.91427845 0.7625548 0.7656321]
MTEB-ToolRet
Changed ToolRet Benchmark into BEIR format to make it MTEB compatible. check make_toolret_to_beir_format.ipynb
for more details.
Evaluation Code
git clone https://github.com/yjoonjang/PreRanker.git
cd PreRanker/toolret_eval
python run_mteb.py
Evaluation Results
Model Name | Model Parameter | Recall@10 | MAP@10 | MRR@10 | Precision@10 | NDCG@10 |
---|---|---|---|---|---|---|
yjoonjang/preranker-v1 | 150M | 0.540 | 0.361 | 0.462 | 0.088 | 0.428 |
Alibaba-NLP/gte-reranker-modernbert-base | 150M | 0.524 | 0.356 | 0.454 | 0.086 | 0.422 |
jinaai/jina-reranker-v2-base-multilingual | 278M | 0.502 | 0.331 | 0.414 | 0.083 | 0.395 |
Alibaba-NLP/gte-multilingual-reranker-base | 306M | 0.474 | 0.299 | 0.383 | 0.078 | 0.363 |
BAAI/bge-reranker-v2-m3 | 568M | 0.461 | 0.293 | 0.370 | 0.076 | 0.355 |
Training Details
- preranker-v1 is a fine-tuned model based on Alibaba-NLP/gte-reranker-modernbert-base, via sentence-transformers
- Training data will soon be released.
Training Procedure
- loss: ListNetLoss
- batch size: 4
- learning rate: 2e-5
- epoch: 1
License
apache-2.0
Citation
@misc{Pre:Ranker,
publisher = {Youngjoon Jang, Seongtae Hong},
year = {2025},
url = {https://github.com/yjoonjang/preranker}
},
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ListNetLoss
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
- Downloads last month
- 52
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
HF Inference deployability: The HF Inference API does not support text-ranking models for sentence-transformers
library.
Model tree for yjoonjang/preranker-v1
Base model
answerdotai/ModernBERT-base
Finetuned
Alibaba-NLP/gte-reranker-modernbert-base