Update README.md
Browse files
README.md
CHANGED
|
@@ -4,7 +4,120 @@ tags:
|
|
| 4 |
- pytorch_model_hub_mixin
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- pytorch_model_hub_mixin
|
| 5 |
---
|
| 6 |
|
| 7 |
+
# Diffusion Text Demo Model
|
| 8 |
+
|
| 9 |
+
A prototype **diffusion-based language model** implemented in PyTorch and trained on a subset of the [**TinyStories** dataset](https://huggingface.co/datasets/roneneldan/TinyStories).
|
| 10 |
+
This model demonstrates iterative denoising for text generation, conditioned on an input prompt.
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
## Training Details
|
| 15 |
+
|
| 16 |
+
* **Dataset:** 50,000 samples from [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories)
|
| 17 |
+
* **Epochs:** 50
|
| 18 |
+
* **Batch size:** 16
|
| 19 |
+
* **Learning rate:** 1e-5
|
| 20 |
+
* **Diffusion steps (T):** 10
|
| 21 |
+
* **Tokenizer:** Naive whitespace (for demo purposes)
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## π Training Loss
|
| 26 |
+
|
| 27 |
+
| Stage | Start Loss | End Loss |
|
| 28 |
+
| ------------ | ---------- | -------- |
|
| 29 |
+
| Epochs 1β10 | 8.38 | 6.13 |
|
| 30 |
+
| Epochs 11β20 | 6.12 | 6.04 |
|
| 31 |
+
| Epochs 21β50 | 6.04 | 5.92 |
|
| 32 |
+
|
| 33 |
+
**Final Loss (Epoch 50): 5.92**
|
| 34 |
+
|
| 35 |
+
### Loss Curve
|
| 36 |
+
|
| 37 |
+
<img src="diffusion_textmodel_loss.png" width="800" />
|
| 38 |
+
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
## Usage
|
| 42 |
+
|
| 43 |
+
### Install Requirements
|
| 44 |
+
|
| 45 |
+
```bash
|
| 46 |
+
pip install torch huggingface_hub
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
### Load the Model
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
import torch
|
| 53 |
+
from modeling_diffusion import DiffusionTextModel
|
| 54 |
+
|
| 55 |
+
# Load directly from Hub
|
| 56 |
+
model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo")
|
| 57 |
+
model.eval()
|
| 58 |
+
|
| 59 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 60 |
+
model.to(device)
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### Inference with Prompt
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
def generate_with_prompt(model, input_text, max_length, T=10):
|
| 67 |
+
model.eval()
|
| 68 |
+
input_tokens = input_text.split()
|
| 69 |
+
input_ids = [vocab.get(tok, mask_id) for tok in input_tokens]
|
| 70 |
+
|
| 71 |
+
seq = torch.full((1, max_length), mask_id, dtype=torch.long, device=device)
|
| 72 |
+
seq[0, :len(input_ids)] = torch.tensor(input_ids, device=device)
|
| 73 |
+
|
| 74 |
+
for step in range(T, 0, -1):
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
logits = model(seq, torch.tensor([step], device=device))
|
| 77 |
+
probs = torch.softmax(logits, dim=-1)
|
| 78 |
+
for pos in range(len(input_ids), max_length):
|
| 79 |
+
if seq[0, pos].item() == mask_id:
|
| 80 |
+
seq[0, pos] = torch.multinomial(probs[0, pos], 1)
|
| 81 |
+
|
| 82 |
+
ids = seq[0].tolist()
|
| 83 |
+
if pad_id in ids:
|
| 84 |
+
ids = ids[:ids.index(pad_id)]
|
| 85 |
+
return " ".join(id_to_word[i] for i in ids)
|
| 86 |
+
|
| 87 |
+
print(generate_with_prompt(model, "the cat", max_length=50))
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
---
|
| 91 |
+
|
| 92 |
+
## Use in a Hugging Face Space
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
import gradio as gr
|
| 96 |
+
from modeling_diffusion import DiffusionTextModel
|
| 97 |
+
|
| 98 |
+
model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo")
|
| 99 |
+
model.eval()
|
| 100 |
+
|
| 101 |
+
def infer(prompt):
|
| 102 |
+
return generate_with_prompt(model, prompt, max_length=50)
|
| 103 |
+
|
| 104 |
+
gr.Interface(fn=infer, inputs="text", outputs="text").launch()
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
---
|
| 108 |
+
|
| 109 |
+
## References
|
| 110 |
+
|
| 111 |
+
This model was inspired by several works on diffusion for text:
|
| 112 |
+
|
| 113 |
+
* Li et al. (2022) β [**Diffusion-LM Improves Controllable Text Generation**](https://arxiv.org/abs/2205.14217)
|
| 114 |
+
* Austin et al. (2021) β [**Structured Denoising Diffusion Models in Discrete State-Spaces (D3PM)**](https://arxiv.org/abs/2107.03006)
|
| 115 |
+
* He et al. (2023) β [**DiffusionBERT: Improving Generative Masked Language Models with Diffusion**](https://arxiv.org/abs/2211.15029)
|
| 116 |
+
* Gong et al. (2023) β [**DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models**](https://arxiv.org/abs/2211.11694)
|
| 117 |
+
* Nie et al. (2025) β [**Large Language Diffusion Models (LLaDA)**](https://arxiv.org/abs/2501.04687)
|
| 118 |
+
|
| 119 |
+
---
|
| 120 |
+
|
| 121 |
+
β οΈ **Disclaimer:** This is a research prototype. Generations may not be coherent, since the model is trained with a simple tokenizer and on a limited dataset subset. For production-quality results, train longer with a subword tokenizer (e.g., GPT-2 BPE) and scale model size.
|
| 122 |
+
|
| 123 |
+
---
|