Diffusion Text Demo Model
A prototype diffusion-based language model implemented in PyTorch and trained on a subset of the TinyStories dataset. This model demonstrates iterative denoising for text generation, conditioned on an input prompt.
Training Details
- Dataset: 50,000 samples from TinyStories
- Epochs: 50
- Batch size: 16
- Learning rate: 1e-5
- Diffusion steps (T): 10
- Tokenizer: Naive whitespace (for demo purposes)
π Training Loss
Stage | Start Loss | End Loss |
---|---|---|
Epochs 1β10 | 8.38 | 6.13 |
Epochs 11β20 | 6.12 | 6.04 |
Epochs 21β50 | 6.04 | 5.92 |
Final Loss (Epoch 50): 5.92
Loss Curve

Usage
Install Requirements
pip install torch huggingface_hub
Load the Model
import torch
from modeling_diffusion import DiffusionTextModel
# Load directly from Hub
model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
Vocabulary Initialization
import json
from huggingface_hub import hf_hub_download
vocab_file = hf_hub_download("yasserrmd/diffusion-text-demo", "vocab.json")
with open(vocab_file) as f:
vocab = json.load(f)
# Reverse mapping (IDs β tokens)
id_to_word = {int(v): k for k, v in vocab.items()}
# Special IDs
pad_id, mask_id = vocab["[PAD]"], vocab["[MASK]"]
Inference with Prompt
def generate_with_prompt(model, input_text, max_length, T=10):
model.eval()
input_tokens = input_text.split()
input_ids = [vocab.get(tok, mask_id) for tok in input_tokens]
seq = torch.full((1, max_length), mask_id, dtype=torch.long, device=device)
seq[0, :len(input_ids)] = torch.tensor(input_ids, device=device)
for step in range(T, 0, -1):
with torch.no_grad():
logits = model(seq, torch.tensor([step], device=device))
probs = torch.softmax(logits, dim=-1)
for pos in range(len(input_ids), max_length):
if seq[0, pos].item() == mask_id:
seq[0, pos] = torch.multinomial(probs[0, pos], 1)
ids = seq[0].tolist()
if pad_id in ids:
ids = ids[:ids.index(pad_id)]
return " ".join(id_to_word[i] for i in ids)
print(generate_with_prompt(model, "the cat", max_length=50))
Use in a Hugging Face Space
import gradio as gr
from modeling_diffusion import DiffusionTextModel
model = DiffusionTextModel.from_pretrained("yasserrmd/diffusion-text-demo")
model.eval()
def infer(prompt):
return generate_with_prompt(model, prompt, max_length=50)
gr.Interface(fn=infer, inputs="text", outputs="text").launch()
References
This model was inspired by several works on diffusion for text:
- Li et al. (2022) β Diffusion-LM Improves Controllable Text Generation
- Austin et al. (2021) β Structured Denoising Diffusion Models in Discrete State-Spaces (D3PM)
- He et al. (2023) β DiffusionBERT: Improving Generative Masked Language Models with Diffusion
- Gong et al. (2023) β DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models
- Nie et al. (2025) β Large Language Diffusion Models (LLaDA)
β οΈ Disclaimer: This is a research prototype. Generations may not be coherent, since the model is trained with a simple tokenizer and on a limited dataset subset. For production-quality results, train longer with a subword tokenizer (e.g., GPT-2 BPE) and scale model size.
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support