|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
class DiffusionTextModel(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self, vocab_size, max_seq_len, max_time_steps, |
|
embed_dim=128, n_layers=4, n_heads=4): |
|
super().__init__() |
|
self.config = { |
|
"vocab_size": vocab_size, |
|
"max_seq_len": max_seq_len, |
|
"max_time_steps": max_time_steps, |
|
"embed_dim": embed_dim, |
|
"n_layers": n_layers, |
|
"n_heads": n_heads |
|
} |
|
|
|
self.token_emb = nn.Embedding(vocab_size, embed_dim) |
|
self.pos_emb = nn.Embedding(max_seq_len, embed_dim) |
|
self.time_emb = nn.Embedding(max_time_steps+1, embed_dim) |
|
|
|
enc_layer = nn.TransformerEncoderLayer( |
|
d_model=embed_dim, nhead=n_heads, |
|
dim_feedforward=4*embed_dim, activation="gelu" |
|
) |
|
self.transformer = nn.TransformerEncoder(enc_layer, num_layers=n_layers) |
|
self.out = nn.Linear(embed_dim, vocab_size) |
|
|
|
def forward(self, x, t): |
|
B, L = x.shape |
|
tok = self.token_emb(x) |
|
pos = self.pos_emb(torch.arange(L, device=x.device).unsqueeze(0).expand(B, L)) |
|
tim = self.time_emb(t).unsqueeze(1).expand(B, L, -1) |
|
h = tok + pos + tim |
|
h = self.transformer(h.transpose(0,1)).transpose(0,1) |
|
return self.out(h) |
|
|