etdnn-voxceleb1 / README.md
yangwang825's picture
End of training
a152d32 verified
metadata
library_name: transformers
tags:
  - audio-classification
  - generated_from_trainer
datasets:
  - voxceleb
metrics:
  - accuracy
model-index:
  - name: etdnn-voxceleb1
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: confit/voxceleb
          type: voxceleb
          config: verification
          split: train
          args: verification
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9340733266061217

etdnn-voxceleb1

This model is a fine-tuned version of on the confit/voxceleb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3594
  • Accuracy: 0.9341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 256
  • eval_batch_size: 1
  • seed: 914
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.489 1.0 523 4.2089 0.1722
3.0685 2.0 1046 2.7621 0.4110
2.2892 3.0 1569 1.6627 0.6543
1.7576 4.0 2092 1.1761 0.7586
1.3706 5.0 2615 0.8903 0.8204
1.1258 6.0 3138 0.7555 0.8433
0.9379 7.0 3661 0.5587 0.8897
0.7925 8.0 4184 0.4518 0.9117
0.6733 9.0 4707 0.3889 0.9293
0.6187 10.0 5230 0.3594 0.9341

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.0.0+cu117
  • Datasets 3.2.0
  • Tokenizers 0.21.0