File size: 4,844 Bytes
f3279f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-lemma_object_full_notypes-deepseek-coder-1.3b-base-ddp-8lr-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-v2-lemma_object_full_notypes-deepseek-coder-1.3b-base-ddp-8lr-v2

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2454

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.4873        | 0.2   | 3094   | 0.4845          |
| 0.4521        | 0.4   | 6188   | 0.4463          |
| 0.4379        | 0.6   | 9282   | 0.4339          |
| 0.4256        | 0.8   | 12376  | 0.4230          |
| 0.4164        | 1.0   | 15470  | 0.4166          |
| 0.4099        | 1.2   | 18564  | 0.4037          |
| 0.4011        | 1.4   | 21658  | 0.4006          |
| 0.3985        | 1.6   | 24752  | 0.3908          |
| 0.3935        | 1.8   | 27846  | 0.3863          |
| 0.388         | 2.0   | 30940  | 0.3882          |
| 0.3787        | 2.2   | 34034  | 0.3869          |
| 0.3788        | 2.4   | 37128  | 0.3700          |
| 0.3724        | 2.6   | 40222  | 0.3694          |
| 0.3718        | 2.8   | 43316  | 0.3681          |
| 0.368         | 3.0   | 46410  | 0.3615          |
| 0.3601        | 3.2   | 49504  | 0.3575          |
| 0.3592        | 3.4   | 52598  | 0.3544          |
| 0.3541        | 3.6   | 55692  | 0.3536          |
| 0.3552        | 3.8   | 58786  | 0.3493          |
| 0.3517        | 4.0   | 61880  | 0.3444          |
| 0.3401        | 4.2   | 64974  | 0.3432          |
| 0.3357        | 4.4   | 68068  | 0.3358          |
| 0.3368        | 4.6   | 71162  | 0.3340          |
| 0.3274        | 4.8   | 74256  | 0.3342          |
| 0.3264        | 5.0   | 77350  | 0.3287          |
| 0.3193        | 5.2   | 80444  | 0.3240          |
| 0.3209        | 5.4   | 83538  | 0.3155          |
| 0.3186        | 5.6   | 86632  | 0.3242          |
| 0.316         | 5.8   | 89726  | 0.3222          |
| 0.3097        | 6.0   | 92820  | 0.3105          |
| 0.2982        | 6.2   | 95914  | 0.3095          |
| 0.2996        | 6.4   | 99008  | 0.3094          |
| 0.2983        | 6.6   | 102102 | 0.3070          |
| 0.3019        | 6.8   | 105196 | 0.3034          |
| 0.2914        | 7.0   | 108290 | 0.2960          |
| 0.2805        | 7.2   | 111384 | 0.2988          |
| 0.2776        | 7.4   | 114478 | 0.2953          |
| 0.2821        | 7.6   | 117572 | 0.2906          |
| 0.2792        | 7.8   | 120666 | 0.2876          |
| 0.2786        | 8.0   | 123760 | 0.2857          |
| 0.2617        | 8.2   | 126854 | 0.2825          |
| 0.2643        | 8.4   | 129948 | 0.2771          |
| 0.2618        | 8.6   | 133042 | 0.2797          |
| 0.2641        | 8.8   | 136136 | 0.2778          |
| 0.262         | 9.0   | 139230 | 0.2736          |
| 0.2492        | 9.2   | 142324 | 0.2689          |
| 0.2459        | 9.4   | 145418 | 0.2651          |
| 0.2421        | 9.6   | 148512 | 0.2658          |
| 0.2444        | 9.8   | 151606 | 0.2644          |
| 0.2373        | 10.0  | 154700 | 0.2613          |
| 0.2288        | 10.2  | 157794 | 0.2592          |
| 0.2266        | 10.4  | 160888 | 0.2587          |
| 0.2275        | 10.6  | 163982 | 0.2539          |
| 0.2236        | 10.8  | 167076 | 0.2532          |
| 0.2223        | 11.0  | 170170 | 0.2489          |
| 0.213         | 11.2  | 173264 | 0.2506          |
| 0.2086        | 11.4  | 176358 | 0.2493          |
| 0.2069        | 11.6  | 179452 | 0.2463          |
| 0.2031        | 11.8  | 182546 | 0.2450          |
| 0.2086        | 12.0  | 185640 | 0.2454          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0