File size: 4,828 Bytes
a8056a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67fff9c
a8056a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67fff9c
a8056a3
 
 
 
67fff9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8056a3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-task1-v2-lemma_object_full-deepseek-coder-1.3b-base-ddp-8lr-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lemexp-task1-v2-lemma_object_full-deepseek-coder-1.3b-base-ddp-8lr-v2

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2261

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.4519        | 0.2   | 3094   | 0.4528          |
| 0.4192        | 0.4   | 6188   | 0.4162          |
| 0.4051        | 0.6   | 9282   | 0.4043          |
| 0.3928        | 0.8   | 12376  | 0.3904          |
| 0.3846        | 1.0   | 15470  | 0.3827          |
| 0.3797        | 1.2   | 18564  | 0.3772          |
| 0.3744        | 1.4   | 21658  | 0.3697          |
| 0.3697        | 1.6   | 24752  | 0.3640          |
| 0.3643        | 1.8   | 27846  | 0.3624          |
| 0.3614        | 2.0   | 30940  | 0.3526          |
| 0.3546        | 2.2   | 34034  | 0.3512          |
| 0.3503        | 2.4   | 37128  | 0.3487          |
| 0.345         | 2.6   | 40222  | 0.3421          |
| 0.3449        | 2.8   | 43316  | 0.3431          |
| 0.3421        | 3.0   | 46410  | 0.3432          |
| 0.335         | 3.2   | 49504  | 0.3359          |
| 0.3351        | 3.4   | 52598  | 0.3336          |
| 0.33          | 3.6   | 55692  | 0.3340          |
| 0.3283        | 3.8   | 58786  | 0.3282          |
| 0.3266        | 4.0   | 61880  | 0.3166          |
| 0.317         | 4.2   | 64974  | 0.3149          |
| 0.3122        | 4.4   | 68068  | 0.3149          |
| 0.313         | 4.6   | 71162  | 0.3147          |
| 0.3043        | 4.8   | 74256  | 0.3130          |
| 0.3019        | 5.0   | 77350  | 0.3036          |
| 0.2952        | 5.2   | 80444  | 0.3000          |
| 0.2996        | 5.4   | 83538  | 0.3003          |
| 0.2957        | 5.6   | 86632  | 0.2993          |
| 0.2935        | 5.8   | 89726  | 0.3047          |
| 0.2885        | 6.0   | 92820  | 0.2928          |
| 0.2755        | 6.2   | 95914  | 0.2915          |
| 0.2763        | 6.4   | 99008  | 0.2875          |
| 0.2755        | 6.6   | 102102 | 0.2855          |
| 0.2811        | 6.8   | 105196 | 0.2812          |
| 0.2704        | 7.0   | 108290 | 0.2796          |
| 0.26          | 7.2   | 111384 | 0.2776          |
| 0.2564        | 7.4   | 114478 | 0.2691          |
| 0.2613        | 7.6   | 117572 | 0.2702          |
| 0.2568        | 7.8   | 120666 | 0.2684          |
| 0.2579        | 8.0   | 123760 | 0.2643          |
| 0.2422        | 8.2   | 126854 | 0.2624          |
| 0.243         | 8.4   | 129948 | 0.2619          |
| 0.2421        | 8.6   | 133042 | 0.2583          |
| 0.2455        | 8.8   | 136136 | 0.2575          |
| 0.2428        | 9.0   | 139230 | 0.2511          |
| 0.2286        | 9.2   | 142324 | 0.2478          |
| 0.227         | 9.4   | 145418 | 0.2507          |
| 0.2246        | 9.6   | 148512 | 0.2474          |
| 0.2273        | 9.8   | 151606 | 0.2452          |
| 0.2211        | 10.0  | 154700 | 0.2432          |
| 0.2117        | 10.2  | 157794 | 0.2434          |
| 0.2098        | 10.4  | 160888 | 0.2377          |
| 0.2092        | 10.6  | 163982 | 0.2376          |
| 0.2073        | 10.8  | 167076 | 0.2355          |
| 0.2051        | 11.0  | 170170 | 0.2303          |
| 0.1966        | 11.2  | 173264 | 0.2321          |
| 0.1923        | 11.4  | 176358 | 0.2294          |
| 0.1913        | 11.6  | 179452 | 0.2275          |
| 0.189         | 11.8  | 182546 | 0.2267          |
| 0.1924        | 12.0  | 185640 | 0.2261          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0