SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-dataset-v4 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-mpnet")
# Run inference
sentences = [
'Pernikahan usia anak di Indonesia periode 2013-2015',
'Jumlah penduduk Indonesia 2013-2015',
'Indeks Tendensi Bisnis dan Indeks Tendensi Konsumen 2013',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-mpnet-evalandallstats-semantic-mpnet-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | allstats-semantic-mpnet-eval | allstats-semantic-mpnet-test |
|---|---|---|
| pearson_cosine | 0.9714 | 0.9723 |
| spearman_cosine | 0.8934 | 0.8932 |
Training Details
Training Dataset
allstats-semantic-dataset-v4
- Dataset: allstats-semantic-dataset-v4 at 06c3cf8
- Size: 88,250 training samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 4 tokens
- mean: 11.38 tokens
- max: 46 tokens
- min: 4 tokens
- mean: 14.48 tokens
- max: 67 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
query doc label Industri teh Indonesia tahun 2021Statistik Transportasi Laut 20140.1Tahun berapa data pertumbuhan ekonomi Indonesia tersebut?Nilai Tukar Petani (NTP) November 2023 sebesar 116,73 atau naik 0,82 persen. Harga Gabah Kering Panen di Tingkat Petani turun 1,94 persen dan Harga Beras Premium di Penggilingan turun 0,91 persen.0.0Kemiskinan di Indonesia Maret2018 Feb Tenaga Kerja0.1 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-dataset-v4
- Dataset: allstats-semantic-dataset-v4 at 06c3cf8
- Size: 18,910 evaluation samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.35 tokens
- max: 33 tokens
- min: 4 tokens
- mean: 14.25 tokens
- max: 52 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc label nAalisis keuangam deas tshun 019Statistik Migrasi Nusa Tenggara Barat Hasil Survei Penduduk Antar Sensus 20150.1Data tanaman buah dan sayur Indonesia tahun 2016Statistik Penduduk Lanjut Usia 20100.1Pasar beras di Indonesia tahun 2018Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara, April 20210.2 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 8warmup_ratio: 0.1fp16: Truedataloader_num_workers: 4load_best_model_at_end: Truelabel_smoothing_factor: 0.05eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 8max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.05optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mpnet-eval_spearman_cosine | allstats-semantic-mpnet-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | 0.0979 | 0.6119 | - |
| 0.0906 | 250 | 0.0646 | 0.0427 | 0.7249 | - |
| 0.1813 | 500 | 0.039 | 0.0324 | 0.7596 | - |
| 0.2719 | 750 | 0.032 | 0.0271 | 0.7860 | - |
| 0.3626 | 1000 | 0.0276 | 0.0255 | 0.7920 | - |
| 0.4532 | 1250 | 0.0264 | 0.0230 | 0.8072 | - |
| 0.5439 | 1500 | 0.0249 | 0.0222 | 0.8197 | - |
| 0.6345 | 1750 | 0.0226 | 0.0210 | 0.8200 | - |
| 0.7252 | 2000 | 0.0218 | 0.0209 | 0.8202 | - |
| 0.8158 | 2250 | 0.0208 | 0.0201 | 0.8346 | - |
| 0.9065 | 2500 | 0.0209 | 0.0211 | 0.8240 | - |
| 0.9971 | 2750 | 0.0211 | 0.0190 | 0.8170 | - |
| 1.0877 | 3000 | 0.0161 | 0.0182 | 0.8332 | - |
| 1.1784 | 3250 | 0.0158 | 0.0179 | 0.8393 | - |
| 1.2690 | 3500 | 0.0167 | 0.0189 | 0.8341 | - |
| 1.3597 | 3750 | 0.0152 | 0.0168 | 0.8371 | - |
| 1.4503 | 4000 | 0.0151 | 0.0165 | 0.8435 | - |
| 1.5410 | 4250 | 0.0143 | 0.0156 | 0.8365 | - |
| 1.6316 | 4500 | 0.0147 | 0.0157 | 0.8467 | - |
| 1.7223 | 4750 | 0.0138 | 0.0155 | 0.8501 | - |
| 1.8129 | 5000 | 0.0147 | 0.0154 | 0.8457 | - |
| 1.9036 | 5250 | 0.0137 | 0.0152 | 0.8498 | - |
| 1.9942 | 5500 | 0.0144 | 0.0143 | 0.8485 | - |
| 2.0848 | 5750 | 0.0108 | 0.0139 | 0.8439 | - |
| 2.1755 | 6000 | 0.01 | 0.0146 | 0.8563 | - |
| 2.2661 | 6250 | 0.011 | 0.0141 | 0.8558 | - |
| 2.3568 | 6500 | 0.0107 | 0.0144 | 0.8497 | - |
| 2.4474 | 6750 | 0.01 | 0.0138 | 0.8577 | - |
| 2.5381 | 7000 | 0.0097 | 0.0136 | 0.8585 | - |
| 2.6287 | 7250 | 0.0102 | 0.0135 | 0.8521 | - |
| 2.7194 | 7500 | 0.0106 | 0.0133 | 0.8537 | - |
| 2.8100 | 7750 | 0.0098 | 0.0133 | 0.8643 | - |
| 2.9007 | 8000 | 0.0105 | 0.0138 | 0.8543 | - |
| 2.9913 | 8250 | 0.009 | 0.0129 | 0.8555 | - |
| 3.0819 | 8500 | 0.0071 | 0.0121 | 0.8692 | - |
| 3.1726 | 8750 | 0.006 | 0.0120 | 0.8709 | - |
| 3.2632 | 9000 | 0.0078 | 0.0120 | 0.8660 | - |
| 3.3539 | 9250 | 0.0072 | 0.0122 | 0.8656 | - |
| 3.4445 | 9500 | 0.007 | 0.0123 | 0.8696 | - |
| 3.5352 | 9750 | 0.0075 | 0.0117 | 0.8707 | - |
| 3.6258 | 10000 | 0.0081 | 0.0115 | 0.8682 | - |
| 3.7165 | 10250 | 0.0083 | 0.0116 | 0.8617 | - |
| 3.8071 | 10500 | 0.0075 | 0.0116 | 0.8665 | - |
| 3.8978 | 10750 | 0.0077 | 0.0119 | 0.8733 | - |
| 3.9884 | 11000 | 0.008 | 0.0113 | 0.8678 | - |
| 4.0790 | 11250 | 0.0051 | 0.0110 | 0.8760 | - |
| 4.1697 | 11500 | 0.0052 | 0.0108 | 0.8729 | - |
| 4.2603 | 11750 | 0.0056 | 0.0108 | 0.8771 | - |
| 4.3510 | 12000 | 0.0052 | 0.0109 | 0.8793 | - |
| 4.4416 | 12250 | 0.0049 | 0.0109 | 0.8766 | - |
| 4.5323 | 12500 | 0.0055 | 0.0114 | 0.8742 | - |
| 4.6229 | 12750 | 0.0061 | 0.0108 | 0.8749 | - |
| 4.7136 | 13000 | 0.0058 | 0.0109 | 0.8833 | - |
| 4.8042 | 13250 | 0.0049 | 0.0108 | 0.8767 | - |
| 4.8949 | 13500 | 0.0046 | 0.0108 | 0.8839 | - |
| 4.9855 | 13750 | 0.0052 | 0.0104 | 0.8790 | - |
| 5.0761 | 14000 | 0.0041 | 0.0102 | 0.8826 | - |
| 5.1668 | 14250 | 0.004 | 0.0103 | 0.8775 | - |
| 5.2574 | 14500 | 0.0036 | 0.0102 | 0.8855 | - |
| 5.3481 | 14750 | 0.0037 | 0.0104 | 0.8841 | - |
| 5.4387 | 15000 | 0.0036 | 0.0101 | 0.8860 | - |
| 5.5294 | 15250 | 0.0043 | 0.0104 | 0.8852 | - |
| 5.6200 | 15500 | 0.004 | 0.0100 | 0.8856 | - |
| 5.7107 | 15750 | 0.0043 | 0.0101 | 0.8842 | - |
| 5.8013 | 16000 | 0.0043 | 0.0099 | 0.8835 | - |
| 5.8920 | 16250 | 0.0041 | 0.0099 | 0.8852 | - |
| 5.9826 | 16500 | 0.0036 | 0.0101 | 0.8866 | - |
| 6.0732 | 16750 | 0.0031 | 0.0100 | 0.8881 | - |
| 6.1639 | 17000 | 0.0031 | 0.0098 | 0.8880 | - |
| 6.2545 | 17250 | 0.0027 | 0.0098 | 0.8886 | - |
| 6.3452 | 17500 | 0.0032 | 0.0097 | 0.8868 | - |
| 6.4358 | 17750 | 0.0027 | 0.0097 | 0.8876 | - |
| 6.5265 | 18000 | 0.0031 | 0.0097 | 0.8893 | - |
| 6.6171 | 18250 | 0.0032 | 0.0096 | 0.8903 | - |
| 6.7078 | 18500 | 0.003 | 0.0096 | 0.8898 | - |
| 6.7984 | 18750 | 0.0029 | 0.0098 | 0.8907 | - |
| 6.8891 | 19000 | 0.003 | 0.0096 | 0.8896 | - |
| 6.9797 | 19250 | 0.0026 | 0.0096 | 0.8913 | - |
| 7.0703 | 19500 | 0.0024 | 0.0096 | 0.8921 | - |
| 7.1610 | 19750 | 0.0021 | 0.0097 | 0.8920 | - |
| 7.2516 | 20000 | 0.0023 | 0.0096 | 0.8910 | - |
| 7.3423 | 20250 | 0.002 | 0.0096 | 0.8920 | - |
| 7.4329 | 20500 | 0.0022 | 0.0096 | 0.8924 | - |
| 7.5236 | 20750 | 0.002 | 0.0097 | 0.8917 | - |
| 7.6142 | 21000 | 0.0024 | 0.0096 | 0.8923 | - |
| 7.7049 | 21250 | 0.0025 | 0.0095 | 0.8928 | - |
| 7.7955 | 21500 | 0.0022 | 0.0095 | 0.8931 | - |
| 7.8861 | 21750 | 0.0023 | 0.0095 | 0.8932 | - |
| 7.9768 | 22000 | 0.0022 | 0.0095 | 0.8934 | - |
| 8.0 | 22064 | - | - | - | 0.8932 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -
Model tree for yahyaabd/allstats-semantic-mpnet
Dataset used to train yahyaabd/allstats-semantic-mpnet
Evaluation results
- Pearson Cosine on allstats semantic mpnet evalself-reported0.971
- Spearman Cosine on allstats semantic mpnet evalself-reported0.893
- Pearson Cosine on allstats semantic mpnet testself-reported0.972
- Spearman Cosine on allstats semantic mpnet testself-reported0.893