SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1-2")
# Run inference
sentences = [
'Statistik harga Ternate 2012',
'Indikator Ekonomi Agustus 2002',
'Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-base-v1-evalandallstat-semantic-base-v1-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
|---|---|---|
| pearson_cosine | 0.9869 | 0.9868 |
| spearman_cosine | 0.9277 | 0.9257 |
Training Details
Training Dataset
allstats-semantic-synthetic-dataset-v1
- Dataset: allstats-semantic-synthetic-dataset-v1 at e73718f
- Size: 123,637 training samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 10.59 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 14.29 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
query doc label Analisis upah tenaga kerja ekonomi kreatifUpah Tenaga Kerja Ekonomi Kreatif 2011-20160.88cari data persentase rumah tangga yang menggunakan listrik pln menurut provinsi dari 1993 sampai 2022.Persentase Rumah Tangga menurut Provinsi dan Sumber Penerangan Listrik PLN, 1993-20220.93apakah ada tabel yang menunjukkan ekspor minyak mentah ke negara tujuan utama tahun 2000-2023?IHK dan Rata-rata Upah per Bulan Buruh Peternakan dan Perikanan di Bawah Mandor (Supervisor), 2012-2014 (2012=100)0.13 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-synthetic-dataset-v1
- Dataset: allstats-semantic-synthetic-dataset-v1 at e73718f
- Size: 26,494 evaluation samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 10.66 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 13.94 tokens
- max: 70 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc label SBH Aceh 2018: Meulaboh, Banda Aceh, LhokseumaweSurvei Biaya Hidup (SBH) 2018 Meulaboh, Banda Aceh, dan Lhokseumawe0.9ekspor produk indonesia juli 2018 per negaraDirektori Perusahaan Pertambangan Besar 20130.07peternakan sapi di jawa tengah 2011Laporan Bulanan Data Sosial Ekonomi Juli 20240.07 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 24warmup_ratio: 0.1fp16: Truedataloader_num_workers: 4load_best_model_at_end: Truelabel_smoothing_factor: 0.1eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 24max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.1optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
|---|---|---|---|---|---|
| 0 | 0 | - | 0.0942 | 0.6574 | - |
| 0.2588 | 500 | 0.0449 | 0.0262 | 0.7353 | - |
| 0.5176 | 1000 | 0.0232 | 0.0185 | 0.7592 | - |
| 0.7764 | 1500 | 0.0172 | 0.0154 | 0.7760 | - |
| 1.0352 | 2000 | 0.0153 | 0.0137 | 0.7905 | - |
| 1.2940 | 2500 | 0.0124 | 0.0130 | 0.7920 | - |
| 1.5528 | 3000 | 0.0119 | 0.0120 | 0.8048 | - |
| 1.8116 | 3500 | 0.0121 | 0.0121 | 0.8021 | - |
| 2.0704 | 4000 | 0.0114 | 0.0112 | 0.8018 | - |
| 2.3292 | 4500 | 0.0093 | 0.0117 | 0.7996 | - |
| 2.5880 | 5000 | 0.0097 | 0.0105 | 0.8133 | - |
| 2.8468 | 5500 | 0.0092 | 0.0103 | 0.8137 | - |
| 3.1056 | 6000 | 0.0085 | 0.0094 | 0.8247 | - |
| 3.3644 | 6500 | 0.0068 | 0.0090 | 0.8326 | - |
| 3.6232 | 7000 | 0.0073 | 0.0092 | 0.8273 | - |
| 3.8820 | 7500 | 0.007 | 0.0084 | 0.8404 | - |
| 4.1408 | 8000 | 0.0061 | 0.0083 | 0.8381 | - |
| 4.3996 | 8500 | 0.0057 | 0.0082 | 0.8382 | - |
| 4.6584 | 9000 | 0.0056 | 0.0074 | 0.8458 | - |
| 4.9172 | 9500 | 0.0057 | 0.0073 | 0.8468 | - |
| 5.1760 | 10000 | 0.0045 | 0.0071 | 0.8508 | - |
| 5.4348 | 10500 | 0.0041 | 0.0069 | 0.8579 | - |
| 5.6936 | 11000 | 0.0047 | 0.0069 | 0.8471 | - |
| 5.9524 | 11500 | 0.0046 | 0.0067 | 0.8554 | - |
| 6.2112 | 12000 | 0.0034 | 0.0062 | 0.8616 | - |
| 6.4700 | 12500 | 0.0034 | 0.0063 | 0.8636 | - |
| 6.7288 | 13000 | 0.0036 | 0.0062 | 0.8649 | - |
| 6.9876 | 13500 | 0.0037 | 0.0063 | 0.8641 | - |
| 7.2464 | 14000 | 0.0027 | 0.0059 | 0.8691 | - |
| 7.5052 | 14500 | 0.0027 | 0.0060 | 0.8733 | - |
| 7.7640 | 15000 | 0.0031 | 0.0060 | 0.8748 | - |
| 8.0228 | 15500 | 0.0028 | 0.0058 | 0.8736 | - |
| 8.2816 | 16000 | 0.0023 | 0.0055 | 0.8785 | - |
| 8.5404 | 16500 | 0.0025 | 0.0054 | 0.8801 | - |
| 8.7992 | 17000 | 0.0024 | 0.0058 | 0.8809 | - |
| 9.0580 | 17500 | 0.0026 | 0.0058 | 0.8811 | - |
| 9.3168 | 18000 | 0.002 | 0.0055 | 0.8824 | - |
| 9.5756 | 18500 | 0.002 | 0.0053 | 0.8859 | - |
| 9.8344 | 19000 | 0.0021 | 0.0053 | 0.8851 | - |
| 10.0932 | 19500 | 0.0019 | 0.0055 | 0.8904 | - |
| 10.3520 | 20000 | 0.0016 | 0.0052 | 0.8946 | - |
| 10.6108 | 20500 | 0.0017 | 0.0057 | 0.8884 | - |
| 10.8696 | 21000 | 0.0019 | 0.0055 | 0.8889 | - |
| 11.1284 | 21500 | 0.0016 | 0.0052 | 0.8942 | - |
| 11.3872 | 22000 | 0.0014 | 0.0053 | 0.8961 | - |
| 11.6460 | 22500 | 0.0016 | 0.0053 | 0.8928 | - |
| 11.9048 | 23000 | 0.0017 | 0.0051 | 0.8947 | - |
| 12.1636 | 23500 | 0.0013 | 0.0050 | 0.9015 | - |
| 12.4224 | 24000 | 0.0012 | 0.0059 | 0.8886 | - |
| 12.6812 | 24500 | 0.0014 | 0.0051 | 0.9030 | - |
| 12.9400 | 25000 | 0.0014 | 0.0051 | 0.9012 | - |
| 13.1988 | 25500 | 0.0011 | 0.0050 | 0.9037 | - |
| 13.4576 | 26000 | 0.0011 | 0.0050 | 0.9053 | - |
| 13.7164 | 26500 | 0.0011 | 0.0049 | 0.9060 | - |
| 13.9752 | 27000 | 0.0011 | 0.0049 | 0.9086 | - |
| 14.2340 | 27500 | 0.001 | 0.0048 | 0.9063 | - |
| 14.4928 | 28000 | 0.001 | 0.0051 | 0.9056 | - |
| 14.7516 | 28500 | 0.001 | 0.0051 | 0.9079 | - |
| 15.0104 | 29000 | 0.0011 | 0.0049 | 0.9080 | - |
| 15.2692 | 29500 | 0.0008 | 0.0048 | 0.9126 | - |
| 15.5280 | 30000 | 0.0008 | 0.0049 | 0.9112 | - |
| 15.7867 | 30500 | 0.0008 | 0.0049 | 0.9123 | - |
| 16.0455 | 31000 | 0.0008 | 0.0048 | 0.9133 | - |
| 16.3043 | 31500 | 0.0006 | 0.0048 | 0.9103 | - |
| 16.5631 | 32000 | 0.0007 | 0.0049 | 0.9144 | - |
| 16.8219 | 32500 | 0.0008 | 0.0048 | 0.9143 | - |
| 17.0807 | 33000 | 0.0007 | 0.0048 | 0.9159 | - |
| 17.3395 | 33500 | 0.0007 | 0.0047 | 0.9174 | - |
| 17.5983 | 34000 | 0.0006 | 0.0048 | 0.9175 | - |
| 17.8571 | 34500 | 0.0007 | 0.0047 | 0.9163 | - |
| 18.1159 | 35000 | 0.0006 | 0.0046 | 0.9195 | - |
| 18.3747 | 35500 | 0.0006 | 0.0047 | 0.9190 | - |
| 18.6335 | 36000 | 0.0006 | 0.0047 | 0.9192 | - |
| 18.8923 | 36500 | 0.0006 | 0.0047 | 0.9204 | - |
| 19.1511 | 37000 | 0.0005 | 0.0047 | 0.9219 | - |
| 19.4099 | 37500 | 0.0004 | 0.0046 | 0.9218 | - |
| 19.6687 | 38000 | 0.0005 | 0.0047 | 0.9221 | - |
| 19.9275 | 38500 | 0.0005 | 0.0046 | 0.9230 | - |
| 20.1863 | 39000 | 0.0005 | 0.0046 | 0.9233 | - |
| 20.4451 | 39500 | 0.0004 | 0.0046 | 0.9240 | - |
| 20.7039 | 40000 | 0.0005 | 0.0047 | 0.9234 | - |
| 20.9627 | 40500 | 0.0004 | 0.0047 | 0.9241 | - |
| 21.2215 | 41000 | 0.0004 | 0.0046 | 0.9253 | - |
| 21.4803 | 41500 | 0.0004 | 0.0046 | 0.9259 | - |
| 21.7391 | 42000 | 0.0004 | 0.0046 | 0.9262 | - |
| 21.9979 | 42500 | 0.0004 | 0.0046 | 0.9263 | - |
| 22.2567 | 43000 | 0.0003 | 0.0046 | 0.9266 | - |
| 22.5155 | 43500 | 0.0003 | 0.0046 | 0.9266 | - |
| 22.7743 | 44000 | 0.0003 | 0.0046 | 0.9273 | - |
| 23.0331 | 44500 | 0.0003 | 0.0046 | 0.9273 | - |
| 23.2919 | 45000 | 0.0003 | 0.0046 | 0.9274 | - |
| 23.5507 | 45500 | 0.0003 | 0.0046 | 0.9277 | - |
| 23.8095 | 46000 | 0.0003 | 0.0046 | 0.9277 | - |
| 24.0 | 46368 | - | - | - | 0.9257 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Model tree for yahyaabd/allstats-semantic-base-v1-2
Dataset used to train yahyaabd/allstats-semantic-base-v1-2
Evaluation results
- Pearson Cosine on allstats semantic base v1 evalself-reported0.987
- Spearman Cosine on allstats semantic base v1 evalself-reported0.928
- Pearson Cosine on allstat semantic base v1 testself-reported0.987
- Spearman Cosine on allstat semantic base v1 testself-reported0.926