Llama3.1_CoT_V1 / README.md
xinchen9's picture
Adding Evaluation Results (#1)
2b1571c verified
metadata
license: apache-2.0
model-index:
  - name: Llama3.1_CoT_V1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 24.53
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xinchen9/Llama3.1_CoT_V1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 20.17
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xinchen9/Llama3.1_CoT_V1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 1.21
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xinchen9/Llama3.1_CoT_V1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.91
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xinchen9/Llama3.1_CoT_V1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 16.42
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xinchen9/Llama3.1_CoT_V1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 20.06
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xinchen9/Llama3.1_CoT_V1
          name: Open LLM Leaderboard

1. Model Details

Introducing xinchen9/xinchen9/Llama3.1_CoT_V1, an advanced language model comprising 8 billion parameters. It has been fine-trained based on meta-llama/Meta-Llama-3.1-8B.

The llama3-b8 model was fine-tuning on dataset CoT_Collection.

The training step is 30,000. The batch of each device is 8 and toal GPU is 5.

2. How to Use

Here give some examples of how to use our model.

Text Completion

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "xinchen9/Llama3.1_CoT_V1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

3 Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 14.38
IFEval (0-Shot) 24.53
BBH (3-Shot) 20.17
MATH Lvl 5 (4-Shot) 1.21
GPQA (0-shot) 3.91
MuSR (0-shot) 16.42
MMLU-PRO (5-shot) 20.06