splade-distilbert-base-uncased trained on Quora Duplicates Questions

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
# Run inference
sentences = [
    'Which laptop is best under 25000 INR?',
    'What are the best laptops under 25k?',
    'What is the best laptop under 45k?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.2 0.46 0.56 0.14 0.46 0.16 0.28 0.18 0.92 0.36 0.1 0.38 0.4898
dot_accuracy@3 0.34 0.66 0.64 0.32 0.66 0.26 0.36 0.34 0.96 0.5 0.28 0.56 0.7551
dot_accuracy@5 0.38 0.76 0.72 0.36 0.72 0.36 0.4 0.4 1.0 0.62 0.32 0.64 0.8367
dot_accuracy@10 0.46 0.82 0.82 0.44 0.84 0.46 0.44 0.48 1.0 0.7 0.38 0.66 0.9388
dot_precision@1 0.2 0.46 0.56 0.14 0.46 0.16 0.28 0.18 0.92 0.36 0.1 0.38 0.4898
dot_precision@3 0.12 0.46 0.2333 0.12 0.2533 0.0867 0.1867 0.1133 0.3733 0.26 0.0933 0.1933 0.4354
dot_precision@5 0.084 0.412 0.156 0.104 0.176 0.072 0.18 0.08 0.256 0.192 0.064 0.14 0.4286
dot_precision@10 0.058 0.348 0.088 0.068 0.11 0.046 0.148 0.048 0.132 0.124 0.038 0.072 0.3367
dot_recall@1 0.0883 0.025 0.5267 0.0678 0.23 0.16 0.01 0.17 0.8207 0.0767 0.1 0.365 0.0323
dot_recall@3 0.1533 0.0861 0.6333 0.1457 0.38 0.26 0.0176 0.32 0.8987 0.1617 0.28 0.54 0.0833
dot_recall@5 0.1717 0.1356 0.7133 0.2 0.44 0.36 0.0312 0.38 0.9727 0.1977 0.32 0.61 0.1362
dot_recall@10 0.2223 0.2109 0.8133 0.2637 0.55 0.46 0.0436 0.46 0.9827 0.2547 0.38 0.63 0.2075
dot_ndcg@10 0.191 0.4008 0.6697 0.1975 0.4642 0.289 0.169 0.3056 0.9457 0.264 0.2465 0.5013 0.3791
dot_mrr@10 0.279 0.5754 0.6316 0.2355 0.5763 0.237 0.3282 0.2675 0.95 0.455 0.2034 0.4667 0.6323
dot_map@100 0.1449 0.2348 0.6282 0.1473 0.3782 0.2547 0.0487 0.2611 0.9233 0.1868 0.2089 0.4647 0.2306
row_non_zero_mean_query 83.12 110.18 96.78 80.34 87.26 96.06 122.94 79.22 73.84 95.92 181.28 90.8 78.7755
row_sparsity_mean_query 0.9973 0.9964 0.9968 0.9974 0.9971 0.9969 0.996 0.9974 0.9976 0.9969 0.9941 0.997 0.9974
row_non_zero_mean_corpus 196.8254 146.9065 219.1213 125.9158 166.4719 105.462 199.5936 145.2502 74.9677 184.4491 160.5598 197.8948 140.811
row_sparsity_mean_corpus 0.9936 0.9952 0.9928 0.9959 0.9945 0.9965 0.9935 0.9952 0.9975 0.994 0.9947 0.9935 0.9954

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3608
dot_accuracy@3 0.5104
dot_accuracy@5 0.5782
dot_accuracy@10 0.6491
dot_precision@1 0.3608
dot_precision@3 0.2253
dot_precision@5 0.1804
dot_precision@10 0.1244
dot_recall@1 0.2056
dot_recall@3 0.3046
dot_recall@5 0.3591
dot_recall@10 0.4214
dot_ndcg@10 0.3864
dot_mrr@10 0.4491
dot_map@100 0.3163
row_non_zero_mean_query 98.1935
row_sparsity_mean_query 0.9968
row_non_zero_mean_corpus 158.7869
row_sparsity_mean_corpus 0.9948

Training Details

Training Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 99,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.1 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.83 tokens
    • max: 41 tokens
    • min: 6 tokens
    • mean: 15.21 tokens
    • max: 75 tokens
  • Samples:
    anchor positive negative
    What are the best GMAT coaching institutes in Delhi NCR? Which are the best GMAT coaching institutes in Delhi/NCR? What are the best GMAT coaching institutes in Delhi-Noida Area?
    Is a third world war coming? Is World War 3 more imminent than expected? Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
    Should I build iOS or Android apps first? Should people choose Android or iOS first to build their App? How much more effort is it to build your app on both iOS and Android?
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
    

Evaluation Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.05 tokens
    • max: 40 tokens
    • min: 6 tokens
    • mean: 14.14 tokens
    • max: 44 tokens
    • min: 6 tokens
    • mean: 14.56 tokens
    • max: 60 tokens
  • Samples:
    anchor positive negative
    What happens if we use petrol in diesel vehicles? Why can't we use petrol in diesel? Why are diesel engines noisier than petrol engines?
    Why is Saltwater taffy candy imported in Switzerland? Why is Saltwater taffy candy imported in Laos? Is salt a consumer product?
    Which is your favourite film in 2016? What movie is the best movie of 2016? What will the best movie of 2017 be?
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.1938 200 12.7715 - - - - - - - - - - - - - -
0.3876 400 0.2719 - - - - - - - - - - - - - -
0.5814 600 0.234 - - - - - - - - - - - - - -
0.7752 800 0.2068 - - - - - - - - - - - - - -
0.9690 1000 0.2041 - - - - - - - - - - - - - -
-1 -1 - 0.1910 0.4008 0.6697 0.1975 0.4642 0.2890 0.1690 0.3056 0.9457 0.2640 0.2465 0.5013 0.3791 0.3864

Framework Versions

  • Python: 3.9.22
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
Downloads last month
8
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for xin0920/splade-distilbert-base-uncased-msmarco-mrl

Finetuned
(8585)
this model

Dataset used to train xin0920/splade-distilbert-base-uncased-msmarco-mrl

Evaluation results