splade-distilbert-base-uncased trained on Quora Duplicates Questions
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
# Run inference
sentences = [
'Which laptop is best under 25000 INR?',
'What are the best laptops under 25k?',
'What is the best laptop under 45k?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
dot_accuracy@3 | 0.34 | 0.66 | 0.64 | 0.32 | 0.66 | 0.26 | 0.36 | 0.34 | 0.96 | 0.5 | 0.28 | 0.56 | 0.7551 |
dot_accuracy@5 | 0.38 | 0.76 | 0.72 | 0.36 | 0.72 | 0.36 | 0.4 | 0.4 | 1.0 | 0.62 | 0.32 | 0.64 | 0.8367 |
dot_accuracy@10 | 0.46 | 0.82 | 0.82 | 0.44 | 0.84 | 0.46 | 0.44 | 0.48 | 1.0 | 0.7 | 0.38 | 0.66 | 0.9388 |
dot_precision@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
dot_precision@3 | 0.12 | 0.46 | 0.2333 | 0.12 | 0.2533 | 0.0867 | 0.1867 | 0.1133 | 0.3733 | 0.26 | 0.0933 | 0.1933 | 0.4354 |
dot_precision@5 | 0.084 | 0.412 | 0.156 | 0.104 | 0.176 | 0.072 | 0.18 | 0.08 | 0.256 | 0.192 | 0.064 | 0.14 | 0.4286 |
dot_precision@10 | 0.058 | 0.348 | 0.088 | 0.068 | 0.11 | 0.046 | 0.148 | 0.048 | 0.132 | 0.124 | 0.038 | 0.072 | 0.3367 |
dot_recall@1 | 0.0883 | 0.025 | 0.5267 | 0.0678 | 0.23 | 0.16 | 0.01 | 0.17 | 0.8207 | 0.0767 | 0.1 | 0.365 | 0.0323 |
dot_recall@3 | 0.1533 | 0.0861 | 0.6333 | 0.1457 | 0.38 | 0.26 | 0.0176 | 0.32 | 0.8987 | 0.1617 | 0.28 | 0.54 | 0.0833 |
dot_recall@5 | 0.1717 | 0.1356 | 0.7133 | 0.2 | 0.44 | 0.36 | 0.0312 | 0.38 | 0.9727 | 0.1977 | 0.32 | 0.61 | 0.1362 |
dot_recall@10 | 0.2223 | 0.2109 | 0.8133 | 0.2637 | 0.55 | 0.46 | 0.0436 | 0.46 | 0.9827 | 0.2547 | 0.38 | 0.63 | 0.2075 |
dot_ndcg@10 | 0.191 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.289 | 0.169 | 0.3056 | 0.9457 | 0.264 | 0.2465 | 0.5013 | 0.3791 |
dot_mrr@10 | 0.279 | 0.5754 | 0.6316 | 0.2355 | 0.5763 | 0.237 | 0.3282 | 0.2675 | 0.95 | 0.455 | 0.2034 | 0.4667 | 0.6323 |
dot_map@100 | 0.1449 | 0.2348 | 0.6282 | 0.1473 | 0.3782 | 0.2547 | 0.0487 | 0.2611 | 0.9233 | 0.1868 | 0.2089 | 0.4647 | 0.2306 |
row_non_zero_mean_query | 83.12 | 110.18 | 96.78 | 80.34 | 87.26 | 96.06 | 122.94 | 79.22 | 73.84 | 95.92 | 181.28 | 90.8 | 78.7755 |
row_sparsity_mean_query | 0.9973 | 0.9964 | 0.9968 | 0.9974 | 0.9971 | 0.9969 | 0.996 | 0.9974 | 0.9976 | 0.9969 | 0.9941 | 0.997 | 0.9974 |
row_non_zero_mean_corpus | 196.8254 | 146.9065 | 219.1213 | 125.9158 | 166.4719 | 105.462 | 199.5936 | 145.2502 | 74.9677 | 184.4491 | 160.5598 | 197.8948 | 140.811 |
row_sparsity_mean_corpus | 0.9936 | 0.9952 | 0.9928 | 0.9959 | 0.9945 | 0.9965 | 0.9935 | 0.9952 | 0.9975 | 0.994 | 0.9947 | 0.9935 | 0.9954 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3608 |
dot_accuracy@3 | 0.5104 |
dot_accuracy@5 | 0.5782 |
dot_accuracy@10 | 0.6491 |
dot_precision@1 | 0.3608 |
dot_precision@3 | 0.2253 |
dot_precision@5 | 0.1804 |
dot_precision@10 | 0.1244 |
dot_recall@1 | 0.2056 |
dot_recall@3 | 0.3046 |
dot_recall@5 | 0.3591 |
dot_recall@10 | 0.4214 |
dot_ndcg@10 | 0.3864 |
dot_mrr@10 | 0.4491 |
dot_map@100 | 0.3163 |
row_non_zero_mean_query | 98.1935 |
row_sparsity_mean_query | 0.9968 |
row_non_zero_mean_corpus | 158.7869 |
row_sparsity_mean_corpus | 0.9948 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 99,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.1 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.83 tokens
- max: 41 tokens
- min: 6 tokens
- mean: 15.21 tokens
- max: 75 tokens
- Samples:
anchor positive negative What are the best GMAT coaching institutes in Delhi NCR?
Which are the best GMAT coaching institutes in Delhi/NCR?
What are the best GMAT coaching institutes in Delhi-Noida Area?
Is a third world war coming?
Is World War 3 more imminent than expected?
Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
Should I build iOS or Android apps first?
Should people choose Android or iOS first to build their App?
How much more effort is it to build your app on both iOS and Android?
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.05 tokens
- max: 40 tokens
- min: 6 tokens
- mean: 14.14 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 14.56 tokens
- max: 60 tokens
- Samples:
anchor positive negative What happens if we use petrol in diesel vehicles?
Why can't we use petrol in diesel?
Why are diesel engines noisier than petrol engines?
Why is Saltwater taffy candy imported in Switzerland?
Why is Saltwater taffy candy imported in Laos?
Is salt a consumer product?
Which is your favourite film in 2016?
What movie is the best movie of 2016?
What will the best movie of 2017 be?
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1938 | 200 | 12.7715 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3876 | 400 | 0.2719 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5814 | 600 | 0.234 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7752 | 800 | 0.2068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9690 | 1000 | 0.2041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | 0.1910 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.2890 | 0.1690 | 0.3056 | 0.9457 | 0.2640 | 0.2465 | 0.5013 | 0.3791 | 0.3864 |
Framework Versions
- Python: 3.9.22
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for xin0920/splade-distilbert-base-uncased-msmarco-mrl
Base model
distilbert/distilbert-base-uncasedDataset used to train xin0920/splade-distilbert-base-uncased-msmarco-mrl
Evaluation results
- Dot Accuracy@1 on NanoClimateFEVERself-reported0.200
- Dot Accuracy@3 on NanoClimateFEVERself-reported0.340
- Dot Accuracy@5 on NanoClimateFEVERself-reported0.380
- Dot Accuracy@10 on NanoClimateFEVERself-reported0.460
- Dot Precision@1 on NanoClimateFEVERself-reported0.200
- Dot Precision@3 on NanoClimateFEVERself-reported0.120
- Dot Precision@5 on NanoClimateFEVERself-reported0.084
- Dot Precision@10 on NanoClimateFEVERself-reported0.058
- Dot Recall@1 on NanoClimateFEVERself-reported0.088
- Dot Recall@3 on NanoClimateFEVERself-reported0.153