metadata
library_name: transformers
license: mit
base_model: xaviergillard/xlm-roberta-large-vieille-france
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: xlm-roberta-large-vieille-france-v2
results: []
xlm-roberta-large-vieille-france-v2
This model is a fine-tuned version of xaviergillard/xlm-roberta-large-vieille-france on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0724
- Precision: 0.7526
- Recall: 0.8044
- F1: 0.7776
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
No log | 1.0 | 54 | 0.0555 | 0.6035 | 0.6928 | 0.6451 |
No log | 2.0 | 108 | 0.0457 | 0.7216 | 0.7963 | 0.7571 |
No log | 3.0 | 162 | 0.0480 | 0.7147 | 0.8060 | 0.7576 |
No log | 4.0 | 216 | 0.0462 | 0.7173 | 0.8100 | 0.7608 |
No log | 5.0 | 270 | 0.0494 | 0.7536 | 0.8036 | 0.7778 |
No log | 6.0 | 324 | 0.0580 | 0.7619 | 0.8044 | 0.7825 |
No log | 7.0 | 378 | 0.0538 | 0.7487 | 0.7971 | 0.7721 |
No log | 8.0 | 432 | 0.0597 | 0.7520 | 0.8165 | 0.7829 |
No log | 9.0 | 486 | 0.0638 | 0.7345 | 0.8052 | 0.7682 |
0.0888 | 10.0 | 540 | 0.0658 | 0.7579 | 0.8173 | 0.7865 |
0.0888 | 11.0 | 594 | 0.0636 | 0.7506 | 0.8100 | 0.7792 |
0.0888 | 12.0 | 648 | 0.0685 | 0.7496 | 0.8011 | 0.7745 |
0.0888 | 13.0 | 702 | 0.0695 | 0.7507 | 0.8133 | 0.7808 |
0.0888 | 14.0 | 756 | 0.0715 | 0.7511 | 0.8076 | 0.7783 |
0.0888 | 15.0 | 810 | 0.0724 | 0.7526 | 0.8044 | 0.7776 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.2
- Datasets 3.3.0
- Tokenizers 0.21.0