xaviergillard's picture
Upload model with metrics
e6912c0 verified
|
raw
history blame
2.81 kB
metadata
library_name: transformers
license: mit
base_model: xaviergillard/xlm-roberta-large-vieille-france
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: xlm-roberta-large-vieille-france-v2
    results: []

xlm-roberta-large-vieille-france-v2

This model is a fine-tuned version of xaviergillard/xlm-roberta-large-vieille-france on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0724
  • Precision: 0.7526
  • Recall: 0.8044
  • F1: 0.7776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 54 0.0555 0.6035 0.6928 0.6451
No log 2.0 108 0.0457 0.7216 0.7963 0.7571
No log 3.0 162 0.0480 0.7147 0.8060 0.7576
No log 4.0 216 0.0462 0.7173 0.8100 0.7608
No log 5.0 270 0.0494 0.7536 0.8036 0.7778
No log 6.0 324 0.0580 0.7619 0.8044 0.7825
No log 7.0 378 0.0538 0.7487 0.7971 0.7721
No log 8.0 432 0.0597 0.7520 0.8165 0.7829
No log 9.0 486 0.0638 0.7345 0.8052 0.7682
0.0888 10.0 540 0.0658 0.7579 0.8173 0.7865
0.0888 11.0 594 0.0636 0.7506 0.8100 0.7792
0.0888 12.0 648 0.0685 0.7496 0.8011 0.7745
0.0888 13.0 702 0.0695 0.7507 0.8133 0.7808
0.0888 14.0 756 0.0715 0.7511 0.8076 0.7783
0.0888 15.0 810 0.0724 0.7526 0.8044 0.7776

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.2
  • Datasets 3.3.0
  • Tokenizers 0.21.0