This repo contains a low-rank adapter for LLaMA-13b fit on the Stanford Alpaca dataset.
This version of the weights was trained with the following hyperparameters:
- Epochs: 10 (load from best epoch)
- Batch size: 128
- Cutoff length: 1024
- Learning rate: 2e-5
- Lora r: 16
- Lora target modules: q_proj, k_proj, v_proj, o_proj
That is trained by using RTX 3090 * 8 pcs around 10 hrs.:
WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 nohup torchrun --nproc_per_node=8 --master_port=1234 finetune.py \
--base_model 'decapoda-research/llama-13b-hf' \
--data_path './alpaca_data_gpt4_dolly15k.json' \
--output_dir './lora-alpaca-13B-gpt4-dolly15k' \
--batch_size 128 \
--micro_batch_size 4 \
--num_epochs 10 \
--learning_rate 2e-5 \
--cutoff_len 1024 \
--val_set_size 2000 \
--lora_r 4 \
--lora_alpha 16 \
--lora_dropout 0.05 \
--lora_target_modules '[q_proj,k_proj,v_proj,o_proj]' \
--train_on_inputs \
--group_by_length \
&
Instructions for running it can be found at https://github.com/tloen/alpaca-lora.