Upload 2 files
Browse files- app.py +96 -0
- requirements.txt +9 -9
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import io
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from azure.storage.blob import BlobServiceClient
|
10 |
+
|
11 |
+
# Load environment variables from .env file
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Initialize Flask app
|
15 |
+
app = Flask(__name__)
|
16 |
+
CORS(app, resources={r"/*": {"origins": os.getenv("ORIGINS")}}) # Allow requests from specified origins
|
17 |
+
|
18 |
+
# Get Azure Blob Storage connection string from environment variable
|
19 |
+
connect_str = os.getenv("AZURE_STORAGE_CONNECTION_STRING")
|
20 |
+
blob_service_client = BlobServiceClient.from_connection_string(connect_str)
|
21 |
+
container_name = os.getenv("AZURE_BLOB_CONTAINER_NAME")
|
22 |
+
blob_name = os.getenv("AZURE_BLOB_MODEL_PATH") # Path to your model within the container
|
23 |
+
|
24 |
+
model = None
|
25 |
+
|
26 |
+
def load_model():
|
27 |
+
global model
|
28 |
+
try:
|
29 |
+
container_client = blob_service_client.get_container_client(container_name)
|
30 |
+
blob_client = container_client.get_blob_client(blob_name)
|
31 |
+
model_data = blob_client.download_blob().readall()
|
32 |
+
model = YOLO(io.BytesIO(model_data)) # Load YOLO model from bytes
|
33 |
+
print("YOLO model loaded successfully from Azure Blob Storage.")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error loading model from Azure Blob Storage: {e}")
|
36 |
+
print(f"Container Name: {container_name}")
|
37 |
+
print(f"Blob Name: {blob_name}")
|
38 |
+
return jsonify({"error": f"Failed to load model: {e}"}), 500
|
39 |
+
|
40 |
+
|
41 |
+
with app.app_context():
|
42 |
+
# def before_first_request():
|
43 |
+
print("💮 Loading YOLO model...")
|
44 |
+
load_model()
|
45 |
+
|
46 |
+
@app.route("/")
|
47 |
+
def home():
|
48 |
+
return jsonify({"message": "Welcome to the YOLOv5 API!", "host": request.host, "url": request.url})
|
49 |
+
|
50 |
+
@app.route("/predict", methods=["POST"])
|
51 |
+
def predict():
|
52 |
+
"""Receive an image from the frontend, run YOLO model, and return detections."""
|
53 |
+
if "file" not in request.files:
|
54 |
+
return jsonify({"error": "No file uploaded"}), 400
|
55 |
+
|
56 |
+
file = request.files["file"]
|
57 |
+
# Read image file as a byte stream and convert to numpy array using OpenCV
|
58 |
+
file_bytes = np.frombuffer(file.read(), np.uint8)
|
59 |
+
image_array = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
|
60 |
+
|
61 |
+
try:
|
62 |
+
results = model.predict(image_array)
|
63 |
+
predictions = {}
|
64 |
+
|
65 |
+
# Process detections
|
66 |
+
for result in results:
|
67 |
+
for box in result.boxes:
|
68 |
+
class_id = int(box.cls[0].item()) # Class ID
|
69 |
+
label = model.names[class_id] # Class name
|
70 |
+
confidence = round(box.conf[0].item(), 2) # Confidence score
|
71 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box coordinates
|
72 |
+
|
73 |
+
prediction = {
|
74 |
+
"bbox": [x1, y1, x2, y2],
|
75 |
+
"class_id": class_id,
|
76 |
+
"confidence": confidence
|
77 |
+
}
|
78 |
+
# Ensure the label name doesn't contain spaces and is lowercase e.g. "root_piece"
|
79 |
+
label = label.replace(" ", "_").lower()
|
80 |
+
if label not in predictions:
|
81 |
+
predictions[label] = []
|
82 |
+
predictions[label].append(prediction)
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
return jsonify({"error": str(e)}), 500
|
86 |
+
|
87 |
+
return jsonify({"prediction": predictions})
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
if os.getenv("ENVIRONMENT") == "production":
|
91 |
+
# Use Gunicorn to run the app in production
|
92 |
+
from gunicorn.app.wsgiapp import run
|
93 |
+
run()
|
94 |
+
else:
|
95 |
+
# Use Flask's built-in server for local development
|
96 |
+
app.run(debug=True, host='0.0.0.0', port=5000)
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
opencv-python
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
1 |
+
Flask==3.1.0
|
2 |
+
Flask-Cors==5.0.0
|
3 |
+
numpy==2.1.1
|
4 |
+
opencv-python==4.11.0.86
|
5 |
+
ultralytics==8.3.70
|
6 |
+
dill==0.3.9
|
7 |
+
python-dotenv==1.0.1
|
8 |
+
gunicorn==23.0.0
|
9 |
+
azure-storage-blob==12.24.1
|