Delete app.py
Browse files
app.py
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
import plotly.express as px
|
4 |
-
from ultralytics import YOLO
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
-
import pandas as pd
|
9 |
-
from streamlit_lottie import st_lottie
|
10 |
-
import requests
|
11 |
-
|
12 |
-
# Set page configuration
|
13 |
-
st.set_page_config(page_title="Advanced Dental Disease Detection", page_icon="🦷", layout="wide")
|
14 |
-
|
15 |
-
# Enhanced CSS for better styling and image sizing
|
16 |
-
st.markdown("""
|
17 |
-
<style>
|
18 |
-
.main {
|
19 |
-
padding: 2rem;
|
20 |
-
}
|
21 |
-
.stAlert > div {
|
22 |
-
padding: 0.5rem;
|
23 |
-
border-radius: 0.5rem;
|
24 |
-
}
|
25 |
-
.upload-text {
|
26 |
-
font-size: 1.2rem;
|
27 |
-
font-weight: bold;
|
28 |
-
margin-bottom: 1rem;
|
29 |
-
}
|
30 |
-
.condition-section {
|
31 |
-
margin: 1rem 0;
|
32 |
-
padding: 1rem;
|
33 |
-
border-radius: 0.5rem;
|
34 |
-
background-color: #f0f2f6;
|
35 |
-
}
|
36 |
-
.st-emotion-cache-1v0mbdj > img {
|
37 |
-
border-radius: 10px;
|
38 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
39 |
-
max-height: 400px; /* Control maximum height of images */
|
40 |
-
object-fit: contain;
|
41 |
-
}
|
42 |
-
.cropped-image {
|
43 |
-
max-height: 250px; /* Smaller height for cropped images */
|
44 |
-
width: auto;
|
45 |
-
margin: auto;
|
46 |
-
}
|
47 |
-
.st-tabs {
|
48 |
-
background-color: #ffffff;
|
49 |
-
padding: 1rem;
|
50 |
-
border-radius: 0.5rem;
|
51 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
52 |
-
}
|
53 |
-
.detection-grid {
|
54 |
-
display: grid;
|
55 |
-
grid-template-columns: repeat(3, 1fr);
|
56 |
-
gap: 1rem;
|
57 |
-
margin: 1rem 0;
|
58 |
-
}
|
59 |
-
</style>
|
60 |
-
""", unsafe_allow_html=True)
|
61 |
-
|
62 |
-
def load_lottie_url(url: str):
|
63 |
-
"""
|
64 |
-
Load Lottie animation from URL
|
65 |
-
Args:
|
66 |
-
url (str): URL of the Lottie animation
|
67 |
-
Returns:
|
68 |
-
dict: Lottie animation JSON data or None if failed to load
|
69 |
-
"""
|
70 |
-
try:
|
71 |
-
r = requests.get(url)
|
72 |
-
if r.status_code != 200:
|
73 |
-
return None
|
74 |
-
return r.json()
|
75 |
-
except Exception as e:
|
76 |
-
st.error(f"Error loading Lottie animation: {str(e)}")
|
77 |
-
return None
|
78 |
-
|
79 |
-
@st.cache_resource
|
80 |
-
def load_model():
|
81 |
-
"""Load the YOLO model"""
|
82 |
-
try:
|
83 |
-
model = YOLO('best.pt')
|
84 |
-
return model
|
85 |
-
except Exception as e:
|
86 |
-
st.error(f"Error loading model: {str(e)}")
|
87 |
-
return None
|
88 |
-
|
89 |
-
def process_image(image, model):
|
90 |
-
"""Process the image and return predictions"""
|
91 |
-
try:
|
92 |
-
if isinstance(image, Image.Image):
|
93 |
-
image_array = np.array(image)
|
94 |
-
else:
|
95 |
-
image_array = image
|
96 |
-
|
97 |
-
results = model.predict(image_array)
|
98 |
-
return results[0]
|
99 |
-
except Exception as e:
|
100 |
-
st.error(f"Error processing image: {str(e)}")
|
101 |
-
return None
|
102 |
-
|
103 |
-
def draw_single_condition(image, box, class_name):
|
104 |
-
"""Draw a single condition's bounding box on the image"""
|
105 |
-
try:
|
106 |
-
image_array = np.array(image).copy()
|
107 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
108 |
-
cv2.rectangle(image_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
109 |
-
cv2.putText(image_array, class_name, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
110 |
-
return Image.fromarray(image_array)
|
111 |
-
except Exception as e:
|
112 |
-
st.error(f"Error drawing single condition: {str(e)}")
|
113 |
-
return image
|
114 |
-
|
115 |
-
def crop_detection(image, box):
|
116 |
-
"""Crop the region of the detected condition"""
|
117 |
-
try:
|
118 |
-
image_array = np.array(image)
|
119 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
120 |
-
padding_x, padding_y = int((x2 - x1) * 0.1), int((y2 - y1) * 0.1)
|
121 |
-
height, width = image_array.shape[:2]
|
122 |
-
x1, y1 = max(0, x1 - padding_x), max(0, y1 - padding_y)
|
123 |
-
x2, y2 = min(width, x2 + padding_x), min(height, y2 + padding_y)
|
124 |
-
cropped = image_array[y1:y2, x1:x2]
|
125 |
-
return Image.fromarray(cropped)
|
126 |
-
except Exception as e:
|
127 |
-
st.error(f"Error cropping detection: {str(e)}")
|
128 |
-
return None
|
129 |
-
|
130 |
-
def draw_predictions(image, results):
|
131 |
-
"""Draw all bounding boxes and labels on the image"""
|
132 |
-
try:
|
133 |
-
if isinstance(image, Image.Image):
|
134 |
-
image_array = np.array(image)
|
135 |
-
else:
|
136 |
-
image_array = image
|
137 |
-
|
138 |
-
plotted_image = results.plot()
|
139 |
-
return Image.fromarray(plotted_image)
|
140 |
-
except Exception as e:
|
141 |
-
st.error(f"Error drawing predictions: {str(e)}")
|
142 |
-
return image
|
143 |
-
|
144 |
-
def group_predictions_by_condition(results):
|
145 |
-
"""Group predictions by condition type"""
|
146 |
-
condition_groups = {}
|
147 |
-
if len(results.boxes) > 0:
|
148 |
-
for box in results.boxes:
|
149 |
-
class_id = int(box.cls[0])
|
150 |
-
class_name = results.names[class_id]
|
151 |
-
confidence = float(box.conf[0])
|
152 |
-
if class_name not in condition_groups:
|
153 |
-
condition_groups[class_name] = []
|
154 |
-
condition_groups[class_name].append({'box': box, 'confidence': confidence})
|
155 |
-
return condition_groups
|
156 |
-
|
157 |
-
def create_confidence_chart(condition_groups):
|
158 |
-
data = []
|
159 |
-
for condition, detections in condition_groups.items():
|
160 |
-
for detection in detections:
|
161 |
-
data.append({
|
162 |
-
'Condition': condition,
|
163 |
-
'Confidence': detection['confidence']
|
164 |
-
})
|
165 |
-
df = pd.DataFrame(data)
|
166 |
-
fig = px.box(df, x='Condition', y='Confidence', points="all")
|
167 |
-
fig.update_layout(title_text='Confidence Distribution by Condition')
|
168 |
-
return fig
|
169 |
-
|
170 |
-
def create_condition_count_chart(condition_groups):
|
171 |
-
counts = {condition: len(detections) for condition, detections in condition_groups.items()}
|
172 |
-
fig = go.Figure(data=[go.Pie(labels=list(counts.keys()), values=list(counts.values()))])
|
173 |
-
fig.update_layout(title_text='Distribution of Detected Conditions')
|
174 |
-
return fig
|
175 |
-
|
176 |
-
def main():
|
177 |
-
# Header
|
178 |
-
st.title("🦷 Advanced Dental Disease Detection")
|
179 |
-
|
180 |
-
# Sidebar
|
181 |
-
with st.sidebar:
|
182 |
-
st.title("About")
|
183 |
-
st.info(
|
184 |
-
"""Welcome to DentalVision AI - Advanced X-ray Analysis
|
185 |
-
|
186 |
-
Our application leverages YOLO11 technology to analyze dental X-rays and identify a comprehensive range of dental conditions and features:
|
187 |
-
|
188 |
-
🦷 Common Dental Conditions
|
189 |
-
- Cavities (Caries) and Tooth Decay
|
190 |
-
- Fractured and Missing Teeth
|
191 |
-
- Primary and Permanent Teeth
|
192 |
-
- Tooth Attrition and Wear
|
193 |
-
|
194 |
-
👨⚕️ Dental Treatments & Restorations
|
195 |
-
- Crowns and Fillings
|
196 |
-
- Dental Implants and Abutments
|
197 |
-
- Root Canal Treatments
|
198 |
-
- Post-cores and Gingival Formers
|
199 |
-
|
200 |
-
🎯 Orthodontic Elements
|
201 |
-
- Malaligned Teeth
|
202 |
-
- Orthodontic Brackets and Wires
|
203 |
-
- Permanent Retainers
|
204 |
-
- TADs and Metal Bands
|
205 |
-
|
206 |
-
🔍 Bone & Tissue Analysis
|
207 |
-
- Mandibular Canal Assessment
|
208 |
-
- Maxillary Sinus Evaluation
|
209 |
-
- Bone Loss and Defects
|
210 |
-
- Cyst Detection
|
211 |
-
|
212 |
-
⚠️ Special Conditions
|
213 |
-
- Impacted Teeth
|
214 |
-
- Periapical Lesions
|
215 |
-
- Retained Roots and Root Pieces
|
216 |
-
- Root Resorption and Supra Eruption
|
217 |
-
|
218 |
-
This AI-powered tool assists dental professionals in comprehensive X-ray analysis for more accurate diagnoses and treatment planning."""
|
219 |
-
)
|
220 |
-
|
221 |
-
# Add Lottie animation
|
222 |
-
#lottie_dental = load_lottie_url("https://assets5.lottiefiles.com/packages/lf20_xnbikipz.json")
|
223 |
-
#if lottie_dental:
|
224 |
-
# st_lottie(lottie_dental, speed=1, height=200, key="dental")
|
225 |
-
|
226 |
-
# Model loading
|
227 |
-
with st.spinner("Loading model..."):
|
228 |
-
model = load_model()
|
229 |
-
|
230 |
-
if model is None:
|
231 |
-
st.error("Failed to load model. Please check the model path and try again.")
|
232 |
-
return
|
233 |
-
|
234 |
-
# File uploader
|
235 |
-
uploaded_file = st.file_uploader("Choose an X-ray image...", type=['png', 'jpg', 'jpeg'])
|
236 |
-
|
237 |
-
if uploaded_file is not None:
|
238 |
-
try:
|
239 |
-
# Read image
|
240 |
-
image = Image.open(uploaded_file)
|
241 |
-
|
242 |
-
# Make prediction
|
243 |
-
with st.spinner("Analyzing image..."):
|
244 |
-
results = process_image(image, model)
|
245 |
-
|
246 |
-
if results is not None:
|
247 |
-
# Display original and processed images side by side
|
248 |
-
st.header("Image Analysis")
|
249 |
-
col1, col2 = st.columns(2)
|
250 |
-
|
251 |
-
with col1:
|
252 |
-
st.subheader("Original Image")
|
253 |
-
st.image(image, use_container_width=True)
|
254 |
-
|
255 |
-
with col2:
|
256 |
-
st.subheader("Detected Conditions")
|
257 |
-
processed_image = draw_predictions(image, results)
|
258 |
-
st.image(processed_image, use_container_width=True)
|
259 |
-
|
260 |
-
# Group predictions by condition
|
261 |
-
condition_groups = group_predictions_by_condition(results)
|
262 |
-
|
263 |
-
if condition_groups:
|
264 |
-
st.header("Detailed Analysis by Condition")
|
265 |
-
|
266 |
-
# Create tabs for each condition type
|
267 |
-
tabs = st.tabs(list(condition_groups.keys()))
|
268 |
-
|
269 |
-
for tab, (condition_name, detections) in zip(tabs, condition_groups.items()):
|
270 |
-
with tab:
|
271 |
-
st.subheader(f"{condition_name} Detections")
|
272 |
-
st.write(f"Number of {condition_name} detected: {len(detections)}")
|
273 |
-
|
274 |
-
# Display each instance of this condition
|
275 |
-
for idx, detection in enumerate(detections, 1):
|
276 |
-
st.write(f"#### Instance {idx}")
|
277 |
-
st.write(f"Confidence: {detection['confidence']:.2%}")
|
278 |
-
|
279 |
-
# Create three columns with controlled image sizes
|
280 |
-
cols = st.columns(3)
|
281 |
-
|
282 |
-
with cols[0]:
|
283 |
-
st.write("Full Image with Detection")
|
284 |
-
single_detection = draw_single_condition(image, detection['box'], condition_name)
|
285 |
-
st.image(single_detection, use_container_width=True, clamp=True)
|
286 |
-
|
287 |
-
with cols[1]:
|
288 |
-
st.write("Cropped Region")
|
289 |
-
cropped_region = crop_detection(image, detection['box'])
|
290 |
-
if cropped_region is not None:
|
291 |
-
st.image(cropped_region, use_container_width=True, clamp=True)
|
292 |
-
|
293 |
-
st.divider()
|
294 |
-
|
295 |
-
# Add advanced visualizations
|
296 |
-
st.header("Advanced Visualizations")
|
297 |
-
viz_cols = st.columns(2)
|
298 |
-
|
299 |
-
with viz_cols[0]:
|
300 |
-
confidence_chart = create_confidence_chart(condition_groups)
|
301 |
-
st.plotly_chart(confidence_chart, use_container_width=True)
|
302 |
-
|
303 |
-
with viz_cols[1]:
|
304 |
-
count_chart = create_condition_count_chart(condition_groups)
|
305 |
-
st.plotly_chart(count_chart, use_container_width=True)
|
306 |
-
|
307 |
-
else:
|
308 |
-
st.info("No dental conditions detected in the image.")
|
309 |
-
|
310 |
-
except Exception as e:
|
311 |
-
st.error(f"Error processing image: {str(e)}")
|
312 |
-
|
313 |
-
# Additional information
|
314 |
-
with st.expander("ℹ️ How to use"):
|
315 |
-
st.markdown("""
|
316 |
-
1. Upload a dental X-ray image using the file uploader above
|
317 |
-
2. The model will automatically process the image
|
318 |
-
3. Results will show detected conditions with confidence scores
|
319 |
-
4. View detailed analysis for each condition type in separate tabs
|
320 |
-
5. For each detection you'll see:
|
321 |
-
- Full image with the detection marked
|
322 |
-
- Cropped view of the detected region
|
323 |
-
- Cropped view with detection marking
|
324 |
-
6. Explore advanced visualizations for a comprehensive overview
|
325 |
-
""")
|
326 |
-
|
327 |
-
if __name__ == "__main__":
|
328 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|