Upload 3 files
Browse files- app.py +328 -0
- best.pt +3 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import plotly.express as px
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import pandas as pd
|
9 |
+
from streamlit_lottie import st_lottie
|
10 |
+
import requests
|
11 |
+
|
12 |
+
# Set page configuration
|
13 |
+
st.set_page_config(page_title="Advanced Dental Disease Detection", page_icon="🦷", layout="wide")
|
14 |
+
|
15 |
+
# Enhanced CSS for better styling and image sizing
|
16 |
+
st.markdown("""
|
17 |
+
<style>
|
18 |
+
.main {
|
19 |
+
padding: 2rem;
|
20 |
+
}
|
21 |
+
.stAlert > div {
|
22 |
+
padding: 0.5rem;
|
23 |
+
border-radius: 0.5rem;
|
24 |
+
}
|
25 |
+
.upload-text {
|
26 |
+
font-size: 1.2rem;
|
27 |
+
font-weight: bold;
|
28 |
+
margin-bottom: 1rem;
|
29 |
+
}
|
30 |
+
.condition-section {
|
31 |
+
margin: 1rem 0;
|
32 |
+
padding: 1rem;
|
33 |
+
border-radius: 0.5rem;
|
34 |
+
background-color: #f0f2f6;
|
35 |
+
}
|
36 |
+
.st-emotion-cache-1v0mbdj > img {
|
37 |
+
border-radius: 10px;
|
38 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
39 |
+
max-height: 400px; /* Control maximum height of images */
|
40 |
+
object-fit: contain;
|
41 |
+
}
|
42 |
+
.cropped-image {
|
43 |
+
max-height: 250px; /* Smaller height for cropped images */
|
44 |
+
width: auto;
|
45 |
+
margin: auto;
|
46 |
+
}
|
47 |
+
.st-tabs {
|
48 |
+
background-color: #ffffff;
|
49 |
+
padding: 1rem;
|
50 |
+
border-radius: 0.5rem;
|
51 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
52 |
+
}
|
53 |
+
.detection-grid {
|
54 |
+
display: grid;
|
55 |
+
grid-template-columns: repeat(3, 1fr);
|
56 |
+
gap: 1rem;
|
57 |
+
margin: 1rem 0;
|
58 |
+
}
|
59 |
+
</style>
|
60 |
+
""", unsafe_allow_html=True)
|
61 |
+
|
62 |
+
def load_lottie_url(url: str):
|
63 |
+
"""
|
64 |
+
Load Lottie animation from URL
|
65 |
+
Args:
|
66 |
+
url (str): URL of the Lottie animation
|
67 |
+
Returns:
|
68 |
+
dict: Lottie animation JSON data or None if failed to load
|
69 |
+
"""
|
70 |
+
try:
|
71 |
+
r = requests.get(url)
|
72 |
+
if r.status_code != 200:
|
73 |
+
return None
|
74 |
+
return r.json()
|
75 |
+
except Exception as e:
|
76 |
+
st.error(f"Error loading Lottie animation: {str(e)}")
|
77 |
+
return None
|
78 |
+
|
79 |
+
@st.cache_resource
|
80 |
+
def load_model():
|
81 |
+
"""Load the YOLO model"""
|
82 |
+
try:
|
83 |
+
model = YOLO('best.pt')
|
84 |
+
return model
|
85 |
+
except Exception as e:
|
86 |
+
st.error(f"Error loading model: {str(e)}")
|
87 |
+
return None
|
88 |
+
|
89 |
+
def process_image(image, model):
|
90 |
+
"""Process the image and return predictions"""
|
91 |
+
try:
|
92 |
+
if isinstance(image, Image.Image):
|
93 |
+
image_array = np.array(image)
|
94 |
+
else:
|
95 |
+
image_array = image
|
96 |
+
|
97 |
+
results = model.predict(image_array)
|
98 |
+
return results[0]
|
99 |
+
except Exception as e:
|
100 |
+
st.error(f"Error processing image: {str(e)}")
|
101 |
+
return None
|
102 |
+
|
103 |
+
def draw_single_condition(image, box, class_name):
|
104 |
+
"""Draw a single condition's bounding box on the image"""
|
105 |
+
try:
|
106 |
+
image_array = np.array(image).copy()
|
107 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
108 |
+
cv2.rectangle(image_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
109 |
+
cv2.putText(image_array, class_name, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
110 |
+
return Image.fromarray(image_array)
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Error drawing single condition: {str(e)}")
|
113 |
+
return image
|
114 |
+
|
115 |
+
def crop_detection(image, box):
|
116 |
+
"""Crop the region of the detected condition"""
|
117 |
+
try:
|
118 |
+
image_array = np.array(image)
|
119 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
120 |
+
padding_x, padding_y = int((x2 - x1) * 0.1), int((y2 - y1) * 0.1)
|
121 |
+
height, width = image_array.shape[:2]
|
122 |
+
x1, y1 = max(0, x1 - padding_x), max(0, y1 - padding_y)
|
123 |
+
x2, y2 = min(width, x2 + padding_x), min(height, y2 + padding_y)
|
124 |
+
cropped = image_array[y1:y2, x1:x2]
|
125 |
+
return Image.fromarray(cropped)
|
126 |
+
except Exception as e:
|
127 |
+
st.error(f"Error cropping detection: {str(e)}")
|
128 |
+
return None
|
129 |
+
|
130 |
+
def draw_predictions(image, results):
|
131 |
+
"""Draw all bounding boxes and labels on the image"""
|
132 |
+
try:
|
133 |
+
if isinstance(image, Image.Image):
|
134 |
+
image_array = np.array(image)
|
135 |
+
else:
|
136 |
+
image_array = image
|
137 |
+
|
138 |
+
plotted_image = results.plot()
|
139 |
+
return Image.fromarray(plotted_image)
|
140 |
+
except Exception as e:
|
141 |
+
st.error(f"Error drawing predictions: {str(e)}")
|
142 |
+
return image
|
143 |
+
|
144 |
+
def group_predictions_by_condition(results):
|
145 |
+
"""Group predictions by condition type"""
|
146 |
+
condition_groups = {}
|
147 |
+
if len(results.boxes) > 0:
|
148 |
+
for box in results.boxes:
|
149 |
+
class_id = int(box.cls[0])
|
150 |
+
class_name = results.names[class_id]
|
151 |
+
confidence = float(box.conf[0])
|
152 |
+
if class_name not in condition_groups:
|
153 |
+
condition_groups[class_name] = []
|
154 |
+
condition_groups[class_name].append({'box': box, 'confidence': confidence})
|
155 |
+
return condition_groups
|
156 |
+
|
157 |
+
def create_confidence_chart(condition_groups):
|
158 |
+
data = []
|
159 |
+
for condition, detections in condition_groups.items():
|
160 |
+
for detection in detections:
|
161 |
+
data.append({
|
162 |
+
'Condition': condition,
|
163 |
+
'Confidence': detection['confidence']
|
164 |
+
})
|
165 |
+
df = pd.DataFrame(data)
|
166 |
+
fig = px.box(df, x='Condition', y='Confidence', points="all")
|
167 |
+
fig.update_layout(title_text='Confidence Distribution by Condition')
|
168 |
+
return fig
|
169 |
+
|
170 |
+
def create_condition_count_chart(condition_groups):
|
171 |
+
counts = {condition: len(detections) for condition, detections in condition_groups.items()}
|
172 |
+
fig = go.Figure(data=[go.Pie(labels=list(counts.keys()), values=list(counts.values()))])
|
173 |
+
fig.update_layout(title_text='Distribution of Detected Conditions')
|
174 |
+
return fig
|
175 |
+
|
176 |
+
def main():
|
177 |
+
# Header
|
178 |
+
st.title("🦷 Advanced Dental Disease Detection")
|
179 |
+
|
180 |
+
# Sidebar
|
181 |
+
with st.sidebar:
|
182 |
+
st.title("About")
|
183 |
+
st.info(
|
184 |
+
"""Welcome to DentalVision AI - Advanced X-ray Analysis
|
185 |
+
|
186 |
+
Our application leverages YOLO11 technology to analyze dental X-rays and identify a comprehensive range of dental conditions and features:
|
187 |
+
|
188 |
+
🦷 Common Dental Conditions
|
189 |
+
- Cavities (Caries) and Tooth Decay
|
190 |
+
- Fractured and Missing Teeth
|
191 |
+
- Primary and Permanent Teeth
|
192 |
+
- Tooth Attrition and Wear
|
193 |
+
|
194 |
+
👨⚕️ Dental Treatments & Restorations
|
195 |
+
- Crowns and Fillings
|
196 |
+
- Dental Implants and Abutments
|
197 |
+
- Root Canal Treatments
|
198 |
+
- Post-cores and Gingival Formers
|
199 |
+
|
200 |
+
🎯 Orthodontic Elements
|
201 |
+
- Malaligned Teeth
|
202 |
+
- Orthodontic Brackets and Wires
|
203 |
+
- Permanent Retainers
|
204 |
+
- TADs and Metal Bands
|
205 |
+
|
206 |
+
🔍 Bone & Tissue Analysis
|
207 |
+
- Mandibular Canal Assessment
|
208 |
+
- Maxillary Sinus Evaluation
|
209 |
+
- Bone Loss and Defects
|
210 |
+
- Cyst Detection
|
211 |
+
|
212 |
+
⚠️ Special Conditions
|
213 |
+
- Impacted Teeth
|
214 |
+
- Periapical Lesions
|
215 |
+
- Retained Roots and Root Pieces
|
216 |
+
- Root Resorption and Supra Eruption
|
217 |
+
|
218 |
+
This AI-powered tool assists dental professionals in comprehensive X-ray analysis for more accurate diagnoses and treatment planning."""
|
219 |
+
)
|
220 |
+
|
221 |
+
# Add Lottie animation
|
222 |
+
#lottie_dental = load_lottie_url("https://assets5.lottiefiles.com/packages/lf20_xnbikipz.json")
|
223 |
+
#if lottie_dental:
|
224 |
+
# st_lottie(lottie_dental, speed=1, height=200, key="dental")
|
225 |
+
|
226 |
+
# Model loading
|
227 |
+
with st.spinner("Loading model..."):
|
228 |
+
model = load_model()
|
229 |
+
|
230 |
+
if model is None:
|
231 |
+
st.error("Failed to load model. Please check the model path and try again.")
|
232 |
+
return
|
233 |
+
|
234 |
+
# File uploader
|
235 |
+
uploaded_file = st.file_uploader("Choose an X-ray image...", type=['png', 'jpg', 'jpeg'])
|
236 |
+
|
237 |
+
if uploaded_file is not None:
|
238 |
+
try:
|
239 |
+
# Read image
|
240 |
+
image = Image.open(uploaded_file)
|
241 |
+
|
242 |
+
# Make prediction
|
243 |
+
with st.spinner("Analyzing image..."):
|
244 |
+
results = process_image(image, model)
|
245 |
+
|
246 |
+
if results is not None:
|
247 |
+
# Display original and processed images side by side
|
248 |
+
st.header("Image Analysis")
|
249 |
+
col1, col2 = st.columns(2)
|
250 |
+
|
251 |
+
with col1:
|
252 |
+
st.subheader("Original Image")
|
253 |
+
st.image(image, use_container_width=True)
|
254 |
+
|
255 |
+
with col2:
|
256 |
+
st.subheader("Detected Conditions")
|
257 |
+
processed_image = draw_predictions(image, results)
|
258 |
+
st.image(processed_image, use_container_width=True)
|
259 |
+
|
260 |
+
# Group predictions by condition
|
261 |
+
condition_groups = group_predictions_by_condition(results)
|
262 |
+
|
263 |
+
if condition_groups:
|
264 |
+
st.header("Detailed Analysis by Condition")
|
265 |
+
|
266 |
+
# Create tabs for each condition type
|
267 |
+
tabs = st.tabs(list(condition_groups.keys()))
|
268 |
+
|
269 |
+
for tab, (condition_name, detections) in zip(tabs, condition_groups.items()):
|
270 |
+
with tab:
|
271 |
+
st.subheader(f"{condition_name} Detections")
|
272 |
+
st.write(f"Number of {condition_name} detected: {len(detections)}")
|
273 |
+
|
274 |
+
# Display each instance of this condition
|
275 |
+
for idx, detection in enumerate(detections, 1):
|
276 |
+
st.write(f"#### Instance {idx}")
|
277 |
+
st.write(f"Confidence: {detection['confidence']:.2%}")
|
278 |
+
|
279 |
+
# Create three columns with controlled image sizes
|
280 |
+
cols = st.columns(3)
|
281 |
+
|
282 |
+
with cols[0]:
|
283 |
+
st.write("Full Image with Detection")
|
284 |
+
single_detection = draw_single_condition(image, detection['box'], condition_name)
|
285 |
+
st.image(single_detection, use_container_width=True, clamp=True)
|
286 |
+
|
287 |
+
with cols[1]:
|
288 |
+
st.write("Cropped Region")
|
289 |
+
cropped_region = crop_detection(image, detection['box'])
|
290 |
+
if cropped_region is not None:
|
291 |
+
st.image(cropped_region, use_container_width=True, clamp=True)
|
292 |
+
|
293 |
+
st.divider()
|
294 |
+
|
295 |
+
# Add advanced visualizations
|
296 |
+
st.header("Advanced Visualizations")
|
297 |
+
viz_cols = st.columns(2)
|
298 |
+
|
299 |
+
with viz_cols[0]:
|
300 |
+
confidence_chart = create_confidence_chart(condition_groups)
|
301 |
+
st.plotly_chart(confidence_chart, use_container_width=True)
|
302 |
+
|
303 |
+
with viz_cols[1]:
|
304 |
+
count_chart = create_condition_count_chart(condition_groups)
|
305 |
+
st.plotly_chart(count_chart, use_container_width=True)
|
306 |
+
|
307 |
+
else:
|
308 |
+
st.info("No dental conditions detected in the image.")
|
309 |
+
|
310 |
+
except Exception as e:
|
311 |
+
st.error(f"Error processing image: {str(e)}")
|
312 |
+
|
313 |
+
# Additional information
|
314 |
+
with st.expander("ℹ️ How to use"):
|
315 |
+
st.markdown("""
|
316 |
+
1. Upload a dental X-ray image using the file uploader above
|
317 |
+
2. The model will automatically process the image
|
318 |
+
3. Results will show detected conditions with confidence scores
|
319 |
+
4. View detailed analysis for each condition type in separate tabs
|
320 |
+
5. For each detection you'll see:
|
321 |
+
- Full image with the detection marked
|
322 |
+
- Cropped view of the detected region
|
323 |
+
- Cropped view with detection marking
|
324 |
+
6. Explore advanced visualizations for a comprehensive overview
|
325 |
+
""")
|
326 |
+
|
327 |
+
if __name__ == "__main__":
|
328 |
+
main()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af14905ab5bb9321e6ca55fa5e22bb66dc206f67d7610b9bbf8f38da8af46433
|
3 |
+
size 367706701
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
plotly
|
3 |
+
ultralytics
|
4 |
+
opencv-python
|
5 |
+
numpy
|
6 |
+
pillow
|
7 |
+
pandas
|
8 |
+
streamlit-lottie
|
9 |
+
requests
|