enamelx / app.py
wth-ishu's picture
Upload 2 files
311e1d5 verified
raw
history blame
3.65 kB
from flask import Flask, request, jsonify
from flask_cors import CORS
from ultralytics import YOLO
import numpy as np
import cv2
import io
import os
from dotenv import load_dotenv
from azure.storage.blob import BlobServiceClient
# Load environment variables from .env file
load_dotenv()
# Initialize Flask app
app = Flask(__name__)
CORS(app, resources={r"/*": {"origins": os.getenv("ORIGINS")}}) # Allow requests from specified origins
# Get Azure Blob Storage connection string from environment variable
connect_str = os.getenv("AZURE_STORAGE_CONNECTION_STRING")
blob_service_client = BlobServiceClient.from_connection_string(connect_str)
container_name = os.getenv("AZURE_BLOB_CONTAINER_NAME")
blob_name = os.getenv("AZURE_BLOB_MODEL_PATH") # Path to your model within the container
model = None
def load_model():
global model
try:
container_client = blob_service_client.get_container_client(container_name)
blob_client = container_client.get_blob_client(blob_name)
model_data = blob_client.download_blob().readall()
model = YOLO(io.BytesIO(model_data)) # Load YOLO model from bytes
print("YOLO model loaded successfully from Azure Blob Storage.")
except Exception as e:
print(f"Error loading model from Azure Blob Storage: {e}")
print(f"Container Name: {container_name}")
print(f"Blob Name: {blob_name}")
return jsonify({"error": f"Failed to load model: {e}"}), 500
with app.app_context():
# def before_first_request():
print("💮 Loading YOLO model...")
load_model()
@app.route("/")
def home():
return jsonify({"message": "Welcome to the YOLOv5 API!", "host": request.host, "url": request.url})
@app.route("/predict", methods=["POST"])
def predict():
"""Receive an image from the frontend, run YOLO model, and return detections."""
if "file" not in request.files:
return jsonify({"error": "No file uploaded"}), 400
file = request.files["file"]
# Read image file as a byte stream and convert to numpy array using OpenCV
file_bytes = np.frombuffer(file.read(), np.uint8)
image_array = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
try:
results = model.predict(image_array)
predictions = {}
# Process detections
for result in results:
for box in result.boxes:
class_id = int(box.cls[0].item()) # Class ID
label = model.names[class_id] # Class name
confidence = round(box.conf[0].item(), 2) # Confidence score
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Bounding box coordinates
prediction = {
"bbox": [x1, y1, x2, y2],
"class_id": class_id,
"confidence": confidence
}
# Ensure the label name doesn't contain spaces and is lowercase e.g. "root_piece"
label = label.replace(" ", "_").lower()
if label not in predictions:
predictions[label] = []
predictions[label].append(prediction)
except Exception as e:
return jsonify({"error": str(e)}), 500
return jsonify({"prediction": predictions})
if __name__ == "__main__":
if os.getenv("ENVIRONMENT") == "production":
# Use Gunicorn to run the app in production
from gunicorn.app.wsgiapp import run
run()
else:
# Use Flask's built-in server for local development
app.run(debug=True, host='0.0.0.0', port=5000)